# DETAILED PROJECT REPORT ON

# **ENERGY CONSERVATION IN AGITATION SECTION** (MORBI CERAMIC CLUSTER)

























# **Bureau of Energy Efficiency**

Prepared By

Reviewed By





# **ENERGY CONSERVATION IN AGITATION SECTION MORBI CERAMIC CLUSTER**

BEE, 2010

Detailed Project Report on Energy Conservation in Agitation section

Ceramic SME Cluster, Morbi, Gujarat (India)

New Delhi: Bureau of Energy Efficiency;

Detail Project Report No.: MRV/CRM/EAS/07

## For more information

Bureau of Energy Efficiency (BEE) (Ministry of Power, Government of India)

4<sup>th</sup> Floor, Sewa Bhawan

R. K. Puram, New Delhi – 110066

**Telephone** +91-11-26179699

**Fax** +91-11-26178352

Websites: <a href="www.bee-india.nic.in">www.bee-india.nic.in</a>

# Acknowledgement

We sincerely appreciate the efforts of industry, energy auditors, equipment manufacturers, technology providers, consultants and other experts in the area of energy conservation for joining hands with Bureau of Energy Efficiency (BEE), Ministry of Power, and Government of India for preparing the Detailed Project Report (DPR) under BEE SME Program in SMEs clusters. We appreciate the support of suppliers/vendors for providing the adoptable energy efficient equipments/technical details to the SMEs.

We have received very encouraging feedback for the BEE SME Program in various SME Clusters. Therefore, it was decided to bring out the DPR for the benefits of SMEs. We sincerely thank the officials of BEE, Executing Agencies and ISTSL for all the support and cooperation extended for preparation of the DPR. We gracefully acknowledge the diligent efforts and commitments of all those who have contributed in preparation of the DPR.

# **Contents**

| List o | f Annexure                                          | vii  |
|--------|-----------------------------------------------------|------|
| List o | f Tables                                            | vii  |
| List o | f Figures                                           | viii |
| List o | f Abbreviation                                      | viii |
| Ехес   | utive summary                                       | ix   |
| Abou   | t BEE'S SME program                                 | хi   |
| 1      | INTRODUCTION                                        | 1    |
| 1.1    | Brief Introduction about cluster                    | 1    |
| 1.2    | Energy performance in existing system               | 6    |
| 1.2.1  | Fuel consumption                                    | 6    |
| 1.2.2  | Average annual production                           | 6    |
| 1.2.3  | Specific energy consumption                         | 7    |
| 1.3    | Existing technology/equipment                       | 8    |
| 1.3.1  | Description of existing technology                  | 8    |
| 1.3.2  | Role in process                                     | 8    |
| 1.4    | Baseline establishment for existing technology      | 8    |
| 1.4.1  | Design and operating parameters                     | 8    |
| 1.4.2  | Operating efficiency and how it is determined       | 8    |
| 1.4.3  | Specific electricity consumption                    | 8    |
| 1.5    | Barriers in adoption of proposed technology         | 9    |
| 1.5.1  | Technological barrier                               | 9    |
| 1.5.2  | Financial barrier                                   | 9    |
| 1.5.3  | Skilled manpower                                    | 10   |
| 1.5.4  | Other barrier (If any)                              | 10   |
| 2.     | PROPOSED EQUIPMENT FOR ENERGY EFFICENCY IMPROVEMENT | 11   |
| 2.1    | Description of proposed equipment                   | 11   |

| 2.1.1 | Detailed of proposed equipment11                        |
|-------|---------------------------------------------------------|
| 2.1.2 | Equipment/technology specification12                    |
| 2.1.3 | Integration with existing equipment12                   |
| 2.1.4 | Superiority over existing system12                      |
| 2.1.5 | Source of equipment                                     |
| 2.1.6 | Availability of technology/equipment12                  |
| 2.1.7 | Service providers                                       |
| 2.1.8 | Terms and conditions in sales of equipment              |
| 2.1.9 | Process down time                                       |
| 2.2   | Life cycle assessment and risks analysis                |
| 2.3   | Suitable unit for Implementation of proposed technology |
| 3.    | ECONOMIC BENEFITS FROM PROPOSED TECHNOLOGY14            |
| 3.1   | Technical benefit                                       |
| 3.1.1 | Fuel saving14                                           |
| 3.1.2 | Electricity saving14                                    |
| 3.1.3 | Improvement in product quality14                        |
| 3.1.4 | Increase in production14                                |
| 3.1.5 | Reduction in raw material14                             |
| 3.1.6 | Reduction in other losses                               |
| 3.2   | Monetary benefits14                                     |
| 3.3   | Social benefits                                         |
| 3.3.1 | Improvement in working environment15                    |
| 3.3.2 | Improvement in workers skill                            |
| 3.4   | Environmental benefits15                                |
| 3.4.1 | Reduction in effluent generation15                      |
| 3.4.2 | Reduction in GHG emission15                             |
| 3.4.3 | Reduction in other emissions like SO <sub>X</sub> 16    |

| 4     | INSTALLATION OF PROPOSED EQUIPMENT                                                                                                               | .17  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.1   | Cost of project                                                                                                                                  | .17  |
| 4.1.1 | Equipment cost                                                                                                                                   | .17  |
|       | cost of equipment depends upon type of technologies being used. Details of cost of ment for different technologies are shown in Table 4.1 below: | . 17 |
| 4.1.2 | Erection, commissioning and other misc. cost                                                                                                     | .17  |
| 4.2   | Arrangements of funds                                                                                                                            | .17  |
| 4.2.1 | Entrepreneur's contribution                                                                                                                      | .17  |
| 4.2.2 | Loan amount                                                                                                                                      | .18  |
| 4.2.3 | Subsidy by Government                                                                                                                            | .18  |
| 4.2.4 | Terms & conditions of loan                                                                                                                       | .18  |
| 4.3   | Financial indicators                                                                                                                             | .18  |
| 4.3.1 | Cash flow analysis                                                                                                                               | .18  |
| 4.3.2 | Simple payback period                                                                                                                            | .18  |
| 4.3.3 | Net Present Value (NPV)                                                                                                                          | .19  |
| 4.3.4 | Internal rate of return (IRR)                                                                                                                    | .19  |
| 4.3.5 | Return on investment (ROI)                                                                                                                       | .19  |
| 4.4   | Sensitivity analysis                                                                                                                             | .20  |
| 4.5   | Procurement and implementation schedule                                                                                                          | .21  |

# List of Annexure

| EAnnexure -1:   | Energy audit data used for baseline establishment            | 22 |
|-----------------|--------------------------------------------------------------|----|
| Annexure -2:    | Process flow diagram after project implementation            | 23 |
| Annexure -3:    | Detailed technology assessment report                        | 24 |
| Annexure -4     | Drawings for proposed electrical & civil works               | 26 |
| Annexure -5:    | Detailed financial analysis                                  | 27 |
| Annexure:-6     | Procurement and implementation schedule                      | 35 |
| Annexure -7:    | Details of technology service providers                      | 36 |
| List of Table   |                                                              |    |
| Table 1.1 Deta  | ails of annual energy consumption                            | 1  |
| Table 1.2 Deta  | ails of types of product manufactured                        | 2  |
| Table 1.3 Proc  | luction wise unit breakups                                   | 2  |
| Table 1.4 Aver  | age fuel and electricity consumption                         | 6  |
| Table 1.5 Aver  | age annual production                                        | 6  |
| Table 1.6 Spec  | cific energy consumption                                     | 7  |
| Table 1.7 Equi  | pment wise specific energy consumption                       | 7  |
| Table 1.8 Elect | ricity consumption in agitation section                      | 8  |
| Table 1.9 Spec  | cific energy consumption in agitation section                | 9  |
| Table 3.1 Ener  | rgy and monetary benefit                                     | 15 |
| Table 4.1 Equi  | pment cost for different technologies                        | 17 |
| Table 4.2 Other | er cost required for different technologies                  | 17 |
| Table 4.3 Fina  | ncial indicators of proposed technologies/equipments         | 20 |
| Table 4.4 Sens  | sitivity analysis at different scenarios (VFD)               | 20 |
| Table 4.5 Sens  | sitivity analysis at different scenarios (EE Motor)          | 21 |
| Table 4.6 Sens  | sitivity analysis at different scenarios (On-Off Controller) | 21 |

# List of Figures

Figure 1.1Process flow diagram ......5

#### List of Abbreviation

BEE Bureau of Energy Efficiency

EE Energy Efficient

SME Small and Medium Enterprises

DPR Detailed Project Report

GHG Green House Gases

CDM Clean Development Mechanism

DSCR Debt Service Coverage Ratio

NPV Net Present Value

IRR Internal Rate of Return

ROI Return on Investment

SCM Standard Cubic Meter

MWh Mega Watt hour

SIDBI Small Industrial Development Bank of India

VFD Variable Frequency Drives

#### **EXECUTIVE SUMMARY**

SEE-Tech Solution Pvt. Ltd. is executing BEE-SME program in Morbi Ceramic Cluster, supported by Bureau of Energy Efficiency (BEE) with an overall objective of improving the energy efficiency in cluster units.

Morbi cluster is one of the largest ceramic clusters in India; accordingly this cluster was chosen for energy efficiency improvements by implementing energy efficient measures/technologies, so as to facilitate maximum replication in other ceramic clusters in India. The main energy forms used in the cluster units are grid electricity, Natural gas, charcoal, lignite and small quantity of diesel oil.

In ceramic industry, grinding of raw material is important for getting the good quality of the final product. After grinding process, the material is then sent to the underground tanks containing agitators. Agitators are required to maintain the uniformity of the grinded material. The agitator motors run continuously for the continuous production. Loading on the agitator motors varies with the addition of new grinded material. Therefore electricity saving is possible in agitation section.

Energy conservation in agitation section can be achieved by any one of following three technologies viz. installation of VFD on agitator motor, replacing conventional motor with energy efficient motor and use of On –Off controller system.

Total investment required and financial indicators calculated such as debt equity ratio, monetary saving, IRR, NPV, DSCR and ROI etc for proposed technologies are furnished in Tables below:

#### Installation of VFD on agitator motor

| S.No | Particular            | Unit       | Value        |
|------|-----------------------|------------|--------------|
| 1    | Project cost          | ₹(in lakh) | 3.99         |
| 2    | Electricity saving    | kWh/year   | 52,648       |
| 3    | Monetary benefit      | ₹(in lakh) | 2.13         |
| 4    | Debit equity ratio    | ratio      | 3:1          |
| 5    | Simple payback period | years      | 1.87         |
| 6    | NPV                   | ₹(in lakh) | 1.76         |
| 7    | IRR                   | %age       | 27.67        |
| 8    | ROI                   | %age       | 34.27        |
| 9    | DSCR                  | ratio      | 195          |
| 10   | Process down time     | days       | Not required |

# Replacement of conventional motor with energy efficient motors

| S.No | Particular               | Unit       | Value        |
|------|--------------------------|------------|--------------|
| 1    | Project cost             | ₹(in lakh) | 2.01         |
| 2    | Electricity saving       | kWh/year   | 14,529       |
| 3    | Monetary benefit         | ₹(in lakh) | 0.59         |
| 4    | Debit equity ratio       | ratio      | 3:1          |
| 5    | Simple payback period    | years      | 3.4          |
| 6    | NPV in 11 years @ 10.00% | ₹(in lakh) | 0.62         |
| 7    | IRR                      | %age       | 29.21        |
| 8    | ROI                      | %age       | 25.40        |
| 9    | DSCR                     | ratio      | 1.60         |
| 10   | Process down time        | days       | Not required |

# Use On-Off controller system

| S.No | Particular               | Unit       | Value        |
|------|--------------------------|------------|--------------|
| 1    | Project cost             | ₹(in lakh) | 0.22         |
| 2    | Electricity saving       | kWh/year   | 105,297      |
| 3    | Monetary benefit         | ₹(in lakh) | 4.26         |
| 4    | Debit equity ratio       | ratio      | 3:1          |
| 5    | Simple payback period    | years      | 0.05         |
| 6    | NPV in 11 years @ 10.00% | ₹(in lakh) | 8.09         |
| 7    | IRR                      | %age       | 1895.43      |
| 8    | ROI                      | %age       | 59.76        |
| 9    | DSCR                     | ratio      | 49.75        |
| 10   | Process down time        | days       | Not required |

The projected profitability and cash flow statements indicate that the proposed projects implementation is financially viable and technically feasible.

#### ABOUT BEE'S SME PROGRAM

Bureau of Energy Efficiency (BEE) is implementing a BEE-SME Programme to improve the energy performance in 25 selected SMEs clusters. Morbi Ceramic Cluster is one of them. The BEE's SME Programme intends to enhance the energy efficiency awareness by funding/subsidizing need based studies in SME clusters and giving energy conservation recommendations. For addressing the specific problems of these SMEs and enhancing energy efficiency in the clusters, BEE will be focusing on energy efficiency, energy conservation and technology up-gradation through studies and pilot projects in these SMEs clusters.

#### Major activities in the BEE -SME program are furnished below:

#### Energy use and technology audit

The energy use technology studies would provide information on technology status, best operating practices, gaps in skills and knowledge on energy conservation opportunities, energy saving potential and new energy efficient technologies, etc for each of the sub sector in SMEs.

#### Capacity building of stake holders in cluster on energy efficiency

In most of the cases SME entrepreneurs are dependent on the locally available technologies, service providers for various reasons. To address this issue BEE has also undertaken capacity building of local service providers and entrepreneurs/ Managers of SMEs on energy efficiency improvement in their units as well as clusters. The local service providers will be trained in order to be able to provide the local services in setting up of energy efficiency projects in the clusters

#### Implementation of energy efficiency measures

To implement the technology up-gradation project in the clusters, BEE has proposed to prepare the technology based detailed project reports (DPRs) for a minimum of five technologies in three capacities for each technology.

# Facilitation of innovative financing mechanisms for implementation of energy efficiency projects

The objective of this activity is to facilitate the uptake of energy efficiency measures through innovative financing mechanisms without creating market distortion

#### 1 INTRODUCTION

#### 1.1 Brief Introduction about cluster

Morbi SME Cluster is one of the largest ceramic clusters in India and mainly famous for manufacturing of ceramic tiles. Over 70% of total ceramic tiles product comes from Morbi cluster. This cluster is spread over a stretch of about 10km on the Morbi–Dhuva Highway.

There are approximately 479 ceramic units in this cluster which are engaged in manufacturing of wall tiles, vitrified tiles, floor tiles, sanitary wares, roofing tiles and others product. There are around 50 more ceramic units coming up in Morbi cluster.

Primary raw materials required for manufacturing of tiles are various types of clay, quartz, calcite/wool astonite, frits & Glazes. Most of the raw materials are easily available in Gujarat and in the neighboring state of Rajasthan. Some of the units use raw material produced at another plant. The main reason for growth of ceramic cluster in Morbi is easy availability of raw material viz; clay suitable for ceramic tiles.

The main form of energy used by the cluster units are grid electricity, Natural gas, charcoal, lignite, and diesel oil. Major consumptions of energy are in the form of Natural gas and lignite. Details of total energy consumption at Morbi ceramic cluster are furnished in Table 1.1 below:

Table 1.1 Details of annual energy consumption

| S. No | Type of Fuel | Unit       | Value       | % contribution |
|-------|--------------|------------|-------------|----------------|
| 1     | Electricity  | GWh/year   | 1,200       | 8.23           |
| 2     | Natural gas  | SCM/year   | 660,000,000 | 46.32          |
| 3     | Charcoal     | tonne/year | 165,000     | 8.55           |
| 4     | Lignite      | tonne/year | 1,320,000   | 36.84          |
| 5     | Diesel       | litre/year | 800,000     | 0.06           |

#### Classification of Units

The ceramic units can be broadly categorized into four types based on product manufactured

- Floor tiles unit
- Sanitary ware unit
- · Vitrified tiles unit
- · Wall tiles unit



Further the ceramic cluster is classified into three type based on capacity of unit viz small scale, medium scale and large scale unit.

#### **Products Manufactured**

There are many types of ceramic product manufactured from four different types of units. Details of product manufactured and number of units engaged in manufacturing of such products are given in Table 1.2 below:

Table 1.2 Details of types of product manufactured

| S. No | Type of Product                                          | No. of unit | %age share |  |
|-------|----------------------------------------------------------|-------------|------------|--|
| 1     | Wall Tiles                                               | 178         | 37         |  |
| 2     | Vitrified Tiles                                          | 36          | 8          |  |
| 3     | Floor Tiles                                              | 52          | 11         |  |
| 4     | Sanitary Wares                                           | 43          | 9          |  |
| 5     | Spray dryer Mud manufacturing                            | 40          | 8          |  |
| 6     | Roofing Tiles (seasonal operation)                       | 120         | 25         |  |
| 7     | Third firing manufacturing (Producing pictures on tiles) | 10          | 2          |  |
| 8     | Total                                                    | 479         |            |  |

#### Capacity wise production

Capacity wise production breakup is furnished in Table 1.3 below:

Table 1.3 Production wise unit breakups

| Type of No. of Units. Production product |       |        |       | duction (m²/    | day or MTª/ | day)   |        |        |
|------------------------------------------|-------|--------|-------|-----------------|-------------|--------|--------|--------|
| Scale of Unit                            | Small | Medium | Large | Total           | Small       | Medium | Large  | Total  |
| Wall Tiles                               | 43    | 100    | 35    | 178             | 2,500       | 3,500  | 7,500  | 13,500 |
| Floor Tiles                              | 8     | 38     | 6     | 52              | 3,000       | 4,000  | 7,000  | 14,000 |
| Vitrified Tiles                          | NA    | 22     | 4     | 26 <sup>b</sup> | NA          | 5,760  | 11,520 | 17,280 |
| Sanitary Wares                           | 10    | 24     | 9     | 43              | 4           | 8      | 14     | 26     |

<sup>&</sup>lt;sup>a</sup>-In case of sanitary wares, production is measured in MT.

<sup>&</sup>lt;sup>b</sup>During audit no SSI vitrified tiles units were covered, therefore production data are not available for these units.



#### Energy usages pattern

Average monthly electricity consumption in ceramic unit ranges from 1 lakh to 2 lakh kWh depending on the size of the unit. In thermal energy, solid fuel such as lignite, charcoal, Indonesian coal, briquette, etc are used in spray dryer and Natural gas is used in kiln in all almost all units. Solid fuel consumption in spray dryer ranges from 80 to 160 kg/MT and. Natural gas consumption in kiln varies from 1.01 to 1.4 SCM/m² of tiles produced.

#### General production process for ceramic cluster

The units of Morbi ceramic cluster are involved in the manufacturing of 4 different types of products such as floor tiles, wall tiles, vitrified tiles and sanitary wares. Production process for manufacture of wall, floor and vitrified tiles is nearly the same except some differences in process parameters while the manufacturing process of sanitary wares inter alia involves manual moulding whereas in case of tiles, press is used to form the biscuits. General production processes for manufacturing of ceramic products is are following:

#### Wet Grinding

The raw material such as clay, feldspar, quartz, calcite etc. are mixed with water in a proper proportion and grind in a ball mill to make homogeneous mixture. Ball Mill is a batch type of process. After completion of one batch of ball mill, slurry is sent to the underground tanks containing the agitator motor in each tank to maintain the uniformity of mixture. Mainly blungers are used for mixing and grinding in case of wall and floor tiles, while ball mills are used for grinding in case of vitrified tiles.

#### Spray Drying

After preparation of slurry of required density it is stored in the underground tanks in which it is agitated to maintain uniformity of slurry. The slurry is then pumped through a hydraulic pump into the spray dryer where it is sprayed through nozzles. The material is dried in spray dryer to remove the moisture added during the grinding process in a ball mill. The moisture in the raw material is brought down to about 5-6 % from 35-40%. The product from spray dryer is stored in silos. Hot flue gases at a temperature of about 550-600 °C is used as the heating source which is generated by combustion of lignite, Indonesian coal, saw dust, briquette, Natural gas etc.

# Pressing/Moulding



The product from spray dryer is then sent to the press section which is pneumatically operated where the required sizes of biscuit tiles are formed. In case of sanitary ware manual moulding is carried out by hand held hose.

#### **Drying**

After pressing/moulding products containing about 5–6% moisture is dried to about 2–3% moisture in a dryer. In some units, hot air from kiln cooling zone exhaust is used in dryers and additional fuel firing is provided if required whereas in case of wall and floor tiles, fuel firing is done continuously.

#### Glazing

After drying, biscuit tiles are send for glazing on a glaze line. Glaze is prepared in ball mills. Glazing is required for designing on tiles. In case of sanitary ware the dried wares are glazed in several spray glazing booths, where compressed air is used.

#### Firing and Baking

After glazing product are then sent for final firing in kiln where temperature of 1100-1150 °C is maintained in the kiln. Natural gas is used for combustion in kiln. In some units hot air from gasifier is utilized for combustion.

## **Sizing**

Tiles coming out of kiln are sent for sizing and calibration in case of wall and floor tiles. The tiles are cut in proper sizes so that all tiles have similar dimensions. After sizing the finished product is ready for dispatch.

#### **Polishing**

Polishing is required for vitrified tiles. It utilizes 40-45% of total electricity consumption of plant. After kiln the vitrified tiles are passed through polishing line. Polishing line consist of sizing, calibration and polishing machines.

General production process flow diagram for manufacturing of ceramic product is shown in Figure 1.1.



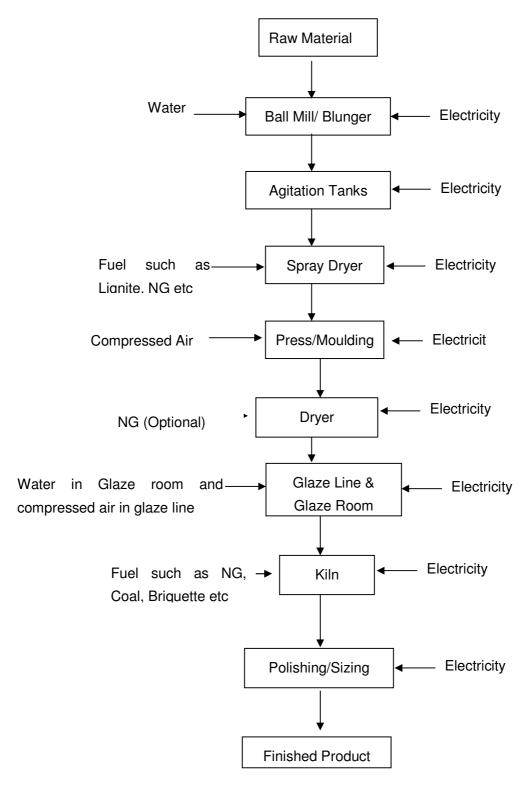



Figure 1.1Process flow diagram



# 1.2 Energy performance in existing system

# 1.2.1 Fuel consumption

Average fuel and electricity consumption in a typical ceramic unit is given in Table 1.4 below:

Table 1.4 Average fuel and electricity consumption

| Energy             | Electricity<br>(MWh per year) |        |       | Natural gas<br>(SCM per year) |           |           | Solid Fuel [lignite]<br>(Tonne per year) |        |       |
|--------------------|-------------------------------|--------|-------|-------------------------------|-----------|-----------|------------------------------------------|--------|-------|
| Scale of<br>Unit   | Small                         | Medium | Large | Small                         | Medium    | Large     | Small                                    | Medium | Large |
| Wall Tiles         | 900                           | 1500   | 2400  | 750,000                       | 1,050,000 | 2,250,000 | 2,400                                    | 2,880  | 3,600 |
| Floor<br>Tiles     | 900                           | 1500   | 2400  | 900,000                       | 1,200,000 | 2,100,000 | 3,600                                    | 4,200  | 4,800 |
| Vitrified<br>Tiles | NA                            | 6000   | 12000 | NA                            | 2,700,000 | 6,000,000 | NA                                       | 6,000  | 9,000 |
| Sanitary<br>Wares  | 2400                          | 450    | 900   | 120,000                       | 240,000   | 420,000   | NA                                       | NA     | NA    |

## 1.2.2 Average annual production

Annual production in terms of  $m^2$ /year is taken in case of tiles and in terms of MT/year in case of sanitary wares is given in the following Table 1.5 below:

**Table 1.5 Average annual production** 

|        |                  | Production (m²/year) or MT/year |              |             |  |  |  |
|--------|------------------|---------------------------------|--------------|-------------|--|--|--|
| S. No. | Type of Industry | Small scale                     | Medium scale | Large scale |  |  |  |
| 1      | Vitrified Tiles  | 750,000                         | 1,050,000    | 2,250,000   |  |  |  |
| 2      | Wall Tiles       | 900,000                         | 1,200,000    | 2,100,000   |  |  |  |
| 3      | Floor Tiles      | NA                              | 1,728,000    | 3,456,000   |  |  |  |
| 4      | Sanitary Wares   | 1200                            | 2400         | 4200        |  |  |  |



## 1.2.3 Specific energy consumption

Specific energy consumption both electrical and thermal energy per m<sup>2</sup> or MT of production for different type of ceramic products are furnished in Table 1.6 below:

**Table 1.6 Specific energy consumption** 

| S. No. | Type of Industry | kWh/m² or<br>kWh/piece <sup>c</sup> | SCM/m² or<br>SCM/ piece <sup>c</sup> |
|--------|------------------|-------------------------------------|--------------------------------------|
| 1      | Vitrified Tiles  | 3.71 - 5.01                         | 1.51 - 3.11                          |
| 2      | Wall Tiles       | 0.61 - 2.47                         | 0.68 - 1.65                          |
| 3      | Floor Tiles      | 1.51 - 1.92                         | 1.28 - 1.8                           |
| 4      | Sanitary Wares   | 0.78 - 1.73                         | 1.10 - 1.49                          |

# Equipment wise specific energy consumption

The specific energy consumption of the equipments used in the ceramic industry is given in Table 1.7 below wherever possible.

Table 1.7 Equipment wise specific energy consumption

| S.No | Equipment                    | Electrical energy Equipment |             | Thermal energy     |           |
|------|------------------------------|-----------------------------|-------------|--------------------|-----------|
|      |                              | Unit                        | Vale        | Unit               | value     |
| 1    | Ball Mill/Blunger            | kWh/MT                      | 4 -12       |                    | -         |
| 2    | Agitation process            | kWh/m³/hr                   | 0.2 - 0.8   |                    | -         |
| 3    | Spray Dryer                  | -                           | -           | kg/MT              | 80 - 160  |
| 4    | Press                        | kWh/m²                      | 0.22- 0.4   |                    | -         |
| 5    | Dryer                        | kWh/m²                      | 0.011       | SCM/m <sup>2</sup> | 0 - 0.63  |
| 6    | Glaze line + Glaze ball mill | kWh/MT                      | 2 - 9       |                    | -         |
| 7    | Kiln                         | kWh/m²                      | 0.36 - 1.26 | SCM/m <sup>2</sup> | 1.01 -1.4 |
| 8    | Polishing line/sizing        | kWh/m²                      | 1.74 - 2.35 |                    | -         |

<sup>&</sup>lt;sup>C</sup> In sanitary ware production is measured in term of pieces only.



#### 1.3 Existing technology/equipment

#### 1.3.1 Description of existing technology

In ceramic industry, grinding of raw material is important for getting the good quality of the final product. After grinding process, the material is then sent to the underground tanks containing agitators. Agitators are required to maintain the uniformity of the grinded material. The agitator motors run continuously for the continuous production. Loading on the agitator motors also varies with the addition of new grinded material.

#### 1.3.2 Role in process

Agitation process is required to maintain the uniformity of the grinded raw material. As the wet grinding process is carried out at Morbi ceramic cluster because of the quality of raw material they are getting, it is very important to maintain the uniformity of the material so that this is pumped to spray dryer for further process.

#### 1.4 Baseline establishment for existing technology

#### 1.4.1 Design and operating parameters

Average annual electricity consumption in agitation section for different types of ceramic products is given in Table 1.8 below:

Table 1.8 Electricity consumption in agitation section

| S. No. | Type of industry     | Unit     | Value    |
|--------|----------------------|----------|----------|
| 1      | Wall and Floor Tiles | kWh/year | 30,752   |
| 2      | Vitrified Tiles      | kWh/year | 2,37,864 |
| 3      | Sanitary wares unit  | kWh/year | 29,132   |

#### 1.4.2 Operating efficiency and how it is determined

Operating efficiencies of different agitation motors is calculated and is given in Annexure 1.

# 1.4.3 Specific electricity consumption

Specific electrical energy consumption in agitation section is given in Table 1.9 below:



Table 1.9 Specific energy consumption in agitation section

| S. No. | Section              | Unit   | Value |
|--------|----------------------|--------|-------|
| 1      | Wall and Floor Tiles | kWh/m² | 0.105 |
| 2      | Vitrified Tiles      | kWh/m² | 0.224 |
| 3      | Sanitary wares unit  | kWh/m² | 0.082 |

# 1.5 Barriers in adoption of proposed technology

#### 1.5.1 Technological barrier

In Morbi cluster, overall technical understanding on ceramic manufacturing is good and rapidly increasing. Important equipments like kiln, polishing machine and agitator etc are bought from Italy (Sacmi) and China (Modena), which are leading suppliers of these equipments world wide. Many of the unit owners are frequently visiting international ceramic fairs and ceramic process equipment suppliers, thus keeping them informed. It has been observed that at cluster level there is committed interested for leadership and following up is quick. In general, there is readiness to adopt provided delivery, outcome and results are demonstrated.

However the first change is still a challenge, upon success, later on duplication and adaptation is extremely prevalent in the cluster. The technologies need to be demonstrated within the cluster. While carrying out the audits and presenting the Energy audit reports to the units, in the discussion with the plant owners & other personnel, many of them agreed with many of the identified energy saving measures and technologies but they demanded demonstration of the energy saving technologies in any plant and thereafter they have readiness to follow.

#### 1.5.2 Financial barrier

Availing finance is not the major issue. Among the SMEs, the larger units, if convinced are capable of either financing it themselves or get the finance from their banks. The smaller units will require competitive loan and other support to raise the loan. However as most of them have been able to expand their setup and grow, there is readiness to spend for energy efficiency technologies which have good returns. Energy Efficiency Financing Schemes such as SIDBI's, if focused on the cluster, will play a catalytic role in implementation of identified energy conservation projects & technologies.



#### 1.5.3 Skilled manpower

In Morbi ceramic cluster, the availability of skilled manpower is one of the problems due to more number of units. One local technical persons available at Morbi takes care of about 5-10 ceramic units. Maintenance or repair work of major equipments of ceramic units like kiln, polishing machine etc, are generally taken care by the equipment suppliers itself as they station one of their experienced technical representative at Morbi for the maintenance work.

Specialized and focused training of the local service providers on better operation and maintenance of the equipments, importance of the energy and its use and energy conservation measures will improve awareness among the unit owners and workforce. Original equipment suppliers should also participate in these programs.

#### 1.5.4 Other barrier (If any)

Many of the new technology provider's (especially some foreign technology leaders) have not shown keen interest in implementation of their new innovative technologies. This appears to be because of fear of duplication.

.



#### 2. PROPOSED EQUIPMENT FOR ENERGY EFFICENCY IMPROVEMENT

#### 2.1 Description of proposed equipment

#### 2.1.1 Detailed of proposed equipment

Energy conservation in agitation section can be achieved by any one of the following 3 technologies.

#### Installation of VFD on agitator motors

It is observed that the loading on agitator motors is in between 30% to 65%. Also speed of motors is higher than the required speed for most of the time during agitation process. It is to be noted that agitation is a variable load process. Initially when the fresh charge comes from Ball Mill/Blunger, loading on motor is in between 65 to 72%. However after some time as the raw material become uniform then loading on motor decreases. For most of the time motor keeps on rotating at higher speed than the required. Installation of the variable frequency drive (VFD) on agitator motors can saves electricity consumption in agitation section by 15%.

#### Replacement of conventional motors by energy efficient motors

In agitation section, loading on motors is adequate at the start of the batch i.e. just after addition of slurry in the agitation tank, however as the mixture becomes uniform loading on motor decreases to less than 50%. This reduction in motor loading decreases the motor efficiency and thereby results in more electricity consumption. As the motors are standard efficiency motors, at reduced load drop in efficiency is very high, therefore replacement of the existing standard efficiency motors by energy efficient motors will result in significant saving of electricity consumption in agitator motors. It is to be noted that while energy efficient motors have better efficiency (1.5% to 3%) at full load but at partial load (< 50%) this difference goes as high as 4% to 8% resulting in higher savings at low load situations.

#### Use of ON – OFF Controller system

In agitation section, agitators are provided in underground tanks to maintain the uniformity of the slurry. These motors operate for about 24 hours in a day. Installation of automatically ON - OFF system on the agitator motors do not affect the uniformity (quality) of slurry but gives saving in electricity consumption in agitator motors. This system automatically switches ON agitator motors for about 10 minutes and then switches OFF for about 5 minutes. This means that in one hour agitator motors operate for about 40 minutes and remain switch off for about 20 minutes. This could result in approximately 30% saving in electricity consumption of agitator motors.



#### 2.1.2 Equipment/technology specification

Technical specifications of the equipments required for all the 3 projects are given in the quotations attach in Annexure 8.

#### 2.1.3 Integration with existing equipment

For implementation of any one technology, there will be no requirement of shutdown of the production. The project can be implemented in phases.

This technologies has been selected because of the following reasons

- Electricity consumption in agitation section is more
- Results are already seen in few ceramic industries where this project is implemented and in operation.
- It results in reduction in GHG emissions.

#### 2.1.4 Superiority over existing system

This project results in saving of electricity consumption in the agitation process. It helps to save the unnecessary supply of electricity to the agitation section.

#### 2.1.5 Source of equipment

This technology is already in use in few ceramic industries at Morbi. These units practically observed the savings achieved after implementation of this project in their plant.

#### 2.1.6 Availability of technology/equipment

As Gujarat is the major hub of industrial units, VFD and energy efficient motors can be easily available at Morbi itself. Most of the persons located at Morbi deals in supply of the same.

#### 2.1.7 Service providers

Details of technologies service providers are shown in Annexure 7.

#### 2.1.8 Terms and conditions in sales of equipment

Warranty period of one year from the date of invoice against any manufacturing defects will be provided. Details of term and condition are shown in Annexure 8.

#### 2.1.9 Process down time

Process down time is not required. In any ceramic unit, more than one agitation tanks are operating. Therefore, this project can be installed alternatively in phases i.e. project will be installed on the motor of agitation tank one by one.



## 2.2 Life cycle assessment and risks analysis

Life cycle of these projects will be 10 years.

Risk involve in implementation of this project are as follows:

- Lack of initiative of the unit owner
- Unwillingness for investment in this project due to fear of affecting the production rate.
- Availability of skilled manpower in industry

## 2.3 Suitable unit for Implementation of proposed technology

Suitable unit for implementation of these technologies are floor tiles unit having the production capacity of about 13,680 m<sup>2</sup> per day and having total Natural gas consumption is about 74,06,655 kWh per year.



#### 3. ECONOMIC BENEFITS FROM PROPOSED TECHNOLOGY

#### 3.1 Technical benefit

#### 3.1.1 Fuel saving

Implementation of this project does not result in reduction in fuel consumption in ceramic industry.

#### 3.1.2 Electricity saving

Amount of electricity save in agitator section depends upon which type of technologies used for energy saving. Electricity saving through different technologies is as follow:

#### Installation of VFD on agitator motors

Implementation of this technologies results in electricity saving of about 52,648 kWh per year of total electricity consumption in agitation section.

#### Replacement of conventional motors by energy efficient motors

Implementation of this technology results in electricity saving of about 14,529 kWh per year of total electricity consumption in agitation section.

#### Use of ON - OFF Controller system

Implementation of this project results in electricity saving of about 1,05,297 kWh per year of total electricity consumption in agitation section.

#### 3.1.3 Improvement in product quality

Product quality achieved would be same as in the present quality. It does not have any impact on the improvement in the quality of the product.

#### 3.1.4 Increase in production

Implementation of these technologies will not lead to any increase in production.

#### 3.1.5 Reduction in raw material

Raw material consumption is same even after the implementation of proposed technologies.

#### 3.1.6 Reduction in other losses

There is no other reduction losses

#### 3.2 Monetary benefits

Monetary benefits due to implementation of these technologies are shown in Table 3.1 below:



Table 3.1 Energy and monetary benefit

| S.No | Parameter                                                                                   | Unit           | Value    |
|------|---------------------------------------------------------------------------------------------|----------------|----------|
| 1    | Present electricity consumption in agitator                                                 | kWh/year       | 3,50,989 |
| 2    | Electricity saving due to VFD                                                               | kWh/year       | 52,648   |
| 3    | Electricity saving due to replacement of conventional motor with energy efficient motor     | kWh/year       | 14,529   |
| 4    | Electricity saving due to use of On-Off controller                                          | kWh/year       | 1,05,297 |
| 5    | Total working days                                                                          | days           | 330      |
| 6    | Cost of electricity                                                                         | ₹ /kWh         | 4.05     |
| 7    | Total monetary due to VFD                                                                   | ₹ in lakh/year | 2.13     |
| 8    | Total monetary benefit due to replacement of conventional motor with energy efficient motor | ₹ in lakh/year | 0.59     |
| 9    | Total monetary benefit due to use of On-Off controller                                      | ₹ in lakh/year | 4.26     |

Further details of total monetary benefits are given in Annexure 3.

#### 3.3 Social benefits

#### 3.3.1 Improvement in working environment

No improvement on the working environment in the plant.

#### 3.3.2 Improvement in workers skill

Technical skills of persons will definitely be improved. As the training will be provided by equipment suppliers which improve the technical skills of manpower required for operating of the equipment and also the technology implementation will create awareness among the workforce about energy efficiency and energy saving.

#### 3.4 Environmental benefits

#### 3.4.1 Reduction in effluent generation

There is no significant impact in effluent generation due to implementation of the project.

#### 3.4.2 Reduction in GHG emission

Implementation of this project will result in saving of electricity consumption. Installation of VFD will save about 52648 kWh of electricity per year which will reduce 42 tCO<sub>2</sub> emissions per year. Similarly, replacement of conventional motor will save 11 tCO<sub>2</sub> emissions per year and use of



On-Off controller will reduce about 84 tCO<sub>2</sub> emissions per year. Availing carbon credit benefits against implementation of these projects will generate extra revenue.

# 3.4.3 Reduction in other emissions like $SO_X$

Due to reduction in electricity consumption after implementation of these projects, equivalent amount of SOx emission will be reduce.



# 4 INSTALLATION OF PROPOSED EQUIPMENT

#### 4.1 Cost of project

#### 4.1.1 Equipment cost

Total cost of equipment depends upon type of technologies being used. Details of cost of equipment for different technologies are shown in Table 4.1 below:

Table 4.1 Equipment cost for different technologies

| S.No | Particular                       | Unit        | Value |
|------|----------------------------------|-------------|-------|
| 1    | Cost of VFD                      | ₹ (in lakh) | 3.12  |
| 2    | Cost of energy efficient motors  | ₹ (in lakh) | 1.61  |
| 3    | Cost of On-Off controller system | ₹ (in lakh) | 0.16  |

# 4.1.2 Erection, commissioning and other misc. cost

Other cost includes cost of erection & commissioning, electrical modification in existing work place, implementation during implementation and man power cost. Details of other cost requires for different technologies are furnished in Table 4.2 below:

Table 4.2 Other cost required for different technologies

| S.No | Particular                                     | Unit        | Value |
|------|------------------------------------------------|-------------|-------|
| 1    | Other cost requires for VFD installation       | ₹ (in lakh) | 0.81  |
| 2    | Other cost for energy efficient motors         | ₹ (in lakh) | 0.40  |
| 3    | Other cost for use of On-Off controller system | ₹ (in lakh) | 0.056 |

#### 4.2 Arrangements of funds

# 4.2.1 Entrepreneur's contribution

Entrepreneur will have to contribute 25% of total project cost.



#### 4.2.2 Loan amount.

Remaining 75% cost of project will be loan amount.

#### 4.2.3 Subsidy by Government

As the overall energy efficiency in the project is more than 15% it qualifies for subsidy of 25 % of the project cost as per the NMCP scheme of Ministry of MSME, Gol. 25 % of the project cost. As the subsidy is normally available after implementation of the project the same has not been taken in the project cost and means of finance. On receipt of subsidy from Ministry of MSME, Gol through the nodal agency the amount of subsidy is generally set off [reduced] from the loan outstanding by the lender bank. Availability of this subsidy will make the project economically more attractive.

#### 4.2.4 Terms & conditions of loan

The interest rate is considered at 10% which is SIDBI's rate of interest for energy efficient projects. The loan tenure is 4 years excluding initial moratorium period is 6 months from the date of first disbursement of loan for VFD and Energy Efficient motor. The loan tenure is 2 years excluding initial moratorium period of 3 months for On-Off Controller.

#### 4.3 Financial indicators

## 4.3.1 Cash flow analysis

Profitability and cash flow statements have been worked out for a period of 5 years for VFD and Energy Efficient motor and 3 years for On-Off Controller. The financials have been worked out on the basis of certain reasonable assumptions, which are outlined below.

- The Operation and maintenance cost is estimated at 5% of cost of total project with 3% increase in every year as escalations.
- Interest on term loan is estimated at 10%.
- Depreciation is provided as per the rates provided in the companies act.

Based on the above assumptions, profitability and cash flow statements have been prepared and calculated in Annexure 5.

#### 4.3.2 Simple payback period

#### Installation of VFD on agitator motors

The total project cost of the proposed technology is ₹ 3.99 lakh and monetary savings is ₹ 2.13 lakh hence the simple payback period works out to be 1.87 years.



#### Replacement of conventional motors by energy efficient motors

The total project cost of the proposed technology is ₹ 2.01 lakh and monetary savings is ₹ 0.59 lakh hence the simple payback period works out to be 3.40 years.

#### Use of ON - OFF Controller system

The total project cost of the proposed technology is ₹ 0.22 lakh and monetary savings is ₹ 4.26 lakh hence the simple payback period works out to be 0.05 years.

## 4.3.3 Net Present Value (NPV)

#### Installation of VFD on agitator motors

The Net present value of the investment at 10% works out to be ₹ 1.76 lakh.

#### Replacement of conventional motors by energy efficient motors

The Net present value of the investment at 10% works out to be ₹ 0.62 lakh.

#### Use of ON – OFF Controller system

The Net present value of the investment at 10% works out to be ₹ 8.09 lakh.

#### 4.3.4 Internal rate of return (IRR)

#### Installation of VFD on agitator motors

The after tax internal rate of return of the project works out to be 27.67%. Thus the project is financially viable.

#### Replacement of conventional motors by energy efficient motors

The after tax internal rate of return of the project works out to be 29.21%. Thus the project is financially viable

#### Use of ON - OFF Controller system

The after tax internal rate of return of the project works out to be 1895.43%. Thus the project is financially viable

#### 4.3.5 Return on investment (ROI)

#### Installation of VFD on agitator motors

The average return on investment of the project activity works out at 34.27%.

#### Replacement of conventional motors by energy efficient motors



The average return on investment of the project activity works out at 25.40%.

#### Use of ON – OFF Controller system

The average return on investment of the project activity works out at 59.76%.

Details of financial indicator are shown in Table 4.3 below:

Table 4.3 Financial indicators of proposed technologies/equipments

|      |                        |       | Value |                        |                   |
|------|------------------------|-------|-------|------------------------|-------------------|
| S.No | Particulars            | Unit  | VFD   | Energy efficient motor | On-Off controller |
| 1    | Simple Pay Back period | Years | 1.87  | 3.40                   | 0.05              |
| 2    | IRR                    | %age  | 27.67 | 29.21                  | 1895.43           |
| 3    | NPV                    | lakh  | 1.76  | 0.62                   | 8.09              |
| 4    | ROI                    | %age  | 34.27 | 25.40                  | 59.76             |
| 5    | DSCR                   | Ratio | 1.95  | 1.60                   | 49.75             |

## 4.4 Sensitivity analysis

A sensitivity analysis has been carried out to ascertain how the project financials would behave in different situations like when there is an increase in fuel savings or decrease in fuel savings. For the purpose of sensitive analysis, two following scenarios has been considered

- Optimistic scenario (Increase in fuel savings by 5%)
- Pessimistic scenario (Decrease in fuel savings by 5%)

In each scenario, other inputs are assumed as a constant. The financial indicators in each of the above situation are indicated along with standard indicators.

Details of sensitivity analysis at different scenarios are shown in Table 4.4below:

Table 4.4 Sensitivity analysis at different scenarios (VFD)

| Particulars                 | DSCR | IRR    | ROI    | NPV    |
|-----------------------------|------|--------|--------|--------|
| Normal                      | 1.36 | 16.70% | 20.76% | 351.67 |
| 5% increase in fuel savings | 1.43 | 18.54% | 21.33% | 452.69 |
| 5% decrease in fuel savings | 1.29 | 14.83% | 20.11% | 250.65 |



Table 4.5 Sensitivity analysis at different scenarios (EE Motor)

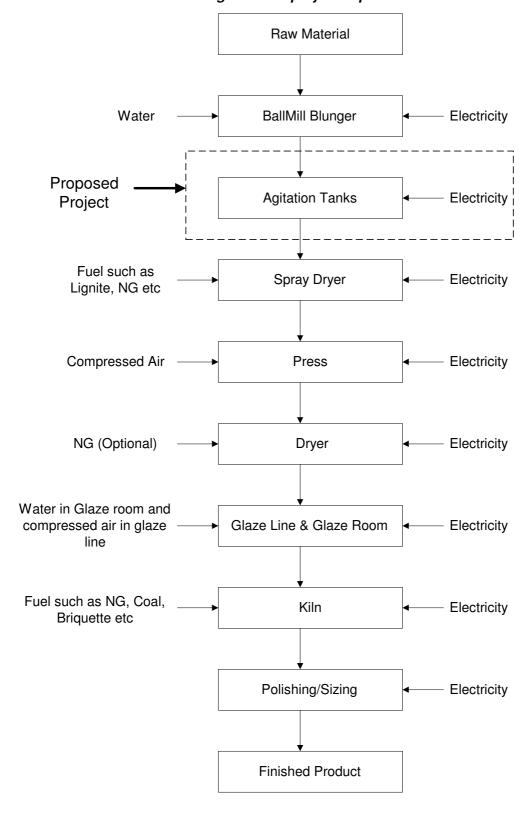
| Particulars                 | DSCR | IRR    | ROI    | NPV  |
|-----------------------------|------|--------|--------|------|
| Normal                      | 1.60 | 29.21% | 25.40% | 0.62 |
| 5% increase in fuel savings | 1.66 | 31.45% | 26.41% | 0.70 |
| 5% decrease in fuel savings | 1.55 | 26.91% | 24.26% | 0.54 |

Table 4.6 Sensitivity analysis at different scenarios (On-Off Controller)

| Particulars                 | DSCR  | IRR      | ROI    | NPV  |
|-----------------------------|-------|----------|--------|------|
| Normal                      | 49.75 | 1895.43% | 59.76% | 8.09 |
| 5% increase in fuel savings | 52.24 | 1992.03% | 59.79% | 8.51 |
| 5% decrease in fuel savings | 47.26 | 1798.83% | 59.74% | 7.67 |

# 4.5 Procurement and implementation schedule

Total procurement period for implementation of different technologies are shown in Annexure 6.




# Annexure

Annexure -1: Energy audit data used for baseline establishment

| S. No. | Agitator Motor | Rated capacity<br>KW | Measured power<br>KW | %age<br>Loading | % operating efficiency |
|--------|----------------|----------------------|----------------------|-----------------|------------------------|
| 1      | Motor No. 1    | 5.5                  | 3.4                  | 50              | 70.32                  |
| 2      | Motor No. 2    | 5.5                  | 3.78                 | 55              | 72.55                  |
| 3      | Motor No. 3    | 5.5                  | 2.78                 | 40              | 65.09                  |
| 4      | Motor No. 4    | 5.5                  | 2.00                 | 29              | 53.45                  |
| 5      | Motor No. 5    | 5.5                  | 1.41                 | 21              | 35.33                  |
| 6      | Motor No. 6    | 5.5                  | 1.59                 | 23              | 42.31                  |
| 7      | Motor No. 7    | 5.5                  | 3.08                 | 45              | 67.93                  |





Annexure -2: Process flow diagram after project implementation



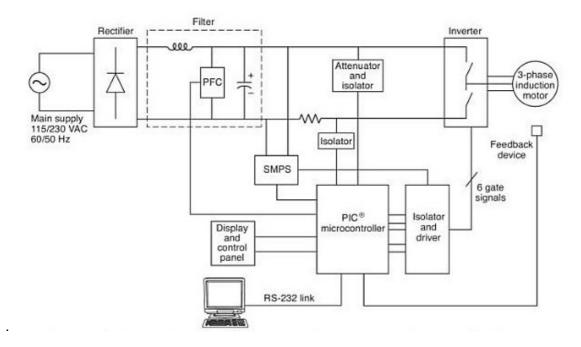
Annexure -3: Detailed technology assessment report
Installation of VFD on agitator motors

| S. No. | Particular                                                             | Unit           | Existing<br>Technology | Proposed<br>Technology |
|--------|------------------------------------------------------------------------|----------------|------------------------|------------------------|
| 1      | Agitator motors of installed capacity 7.5 KW each                      | -              | 8                      | 8                      |
| 2      | Saving in electricity consumption after implementation of this project | %age           | -                      | 15                     |
| 3      | Electricity Consumption in agitation process                           | kWh/year       | 3,50,989               | 2,98,341               |
| 4      | Working days in a year                                                 | days           | 330                    | 330                    |
| 5      | Cost of electricity                                                    | ₹/kWh          | 4.05                   | 4.05                   |
| 6      | Energy cost for agitation process                                      | ₹ in lakh/year | 14.21                  | 12.08                  |
| 7      | Electricity saving in agitation process                                | kWh/year       | 52,648                 |                        |
| 8      | Monetary Saving in agitation process                                   | ₹ in lakh/year | 2.13                   |                        |

# Replacement of conventional motors by energy efficient motors

| S. No. | Particular                                        | Unit           | Existing<br>Technology | Proposed<br>Technology |
|--------|---------------------------------------------------|----------------|------------------------|------------------------|
| 1      | Agitator motors of installed capacity 7.5 KW each | -              | 8                      | 8                      |
| 2      | Average operating efficiency of agitator motors   | %age           | 85                     | 88.10                  |
| 3      | Electricity Consumption in agitation process      | kWh/year       | 3,50,989               | 3,36,460               |
| 4      | Working days in a year                            | days           | 330                    | 330                    |
| 5      | Cost of electricity                               | ₹/kWh          | 4.05                   | 4.05                   |
| 6      | Energy cost for agitation process                 | ₹ in lakh/year | 14.21                  | 13.62                  |
| 7      | Electricity saving in agitation process           | kWh/year       | 14529                  |                        |
| 8      | Monetary Saving in agitation process              | ₹ in lakh/year | 0.59                   |                        |




## Use of ON – OFF Controller system

| S. No. | Particular                                                             | Unit           | Existing<br>Technology | Proposed<br>Technology |
|--------|------------------------------------------------------------------------|----------------|------------------------|------------------------|
| 1      | Agitator motors of installed capacity 7.5 KW each                      | -              | 8                      | 8                      |
| 2      | Saving in electricity consumption after implementation of this project | %age           | -                      | 30                     |
| 3      | Electricity Consumption in agitation process                           | kWh/year       | 3,50,989               | 2,45,692               |
| 4      | Working days in a year                                                 | days           | 330                    | 330                    |
| 5      | Cost of electricity                                                    | ₹/kWh          | 4.05                   | 4.05                   |
| 6      | Energy cost for agitation process                                      | ₹ in lakh/year | 14.21                  | 9.95                   |
| 7      | Electricity saving in agitation process                                | kWh/year       | 145                    |                        |
| 8      | Monetary Saving in agitation process                                   | ₹ in lakh/year | 0.                     |                        |



## Annexure -4 Drawings for proposed electrical & civil works

Detail diagram of functioning and connection of variable frequency drive is shown below



Detailed engineering need not be required for replacing conventional motor with energy efficient motors.



## Annexure -5: Detailed financial analysis

## Assumption

## Installation of VFD on motor

| Name of the Technology         |                    |       |                      |
|--------------------------------|--------------------|-------|----------------------|
| Rated Capacity                 |                    |       |                      |
| Details                        | Unit               | Value | Basis                |
| Installed Capacity             |                    |       | Feasibility Study    |
| No of working days             | Days               |       | Feasibility Study    |
| No of Shifts per day           | Shifts             |       | Feasibility Study    |
| Capacity Utilization Factor    | %                  |       | Feasibility Study    |
| Proposed Investment            |                    |       |                      |
| Plant & Machinery              | ₹ (in lakh)        | 2.85  | Feasibility Study    |
| Erection & Commissioning       | ₹ (in lakh)        | 0.29  | Feasibility Study    |
| Investment without IDC         | ₹ (in lakh)        | 3.14  | Feasibility Study    |
| Interest During Implementation | ₹ (in lakh)        | 0.08  | Feasibility Study    |
| Taxes(VAT)                     | ₹ (in lakh)        | 0.14  | Feasibility Study    |
| Other charges(Contingency)     | ₹ (in lakh)        | 0.29  | Feasibility Study    |
| Total Investment               | ₹ (in lakh)        | 3.64  | Feasibility Study    |
| Financing pattern              |                    |       |                      |
| Own Funds (Equity)             | ₹ (in lakh)        | 0.91  | Feasibility Study    |
| Loan Funds (Term Loan)         | ₹ (in lakh)        | 2.73  | Feasibility Study    |
| Loan Tenure                    | years              | 4     | Assumed              |
| Moratorium Period              | Months             | 6     | Assumed              |
| Repayment Period               | Months             | 66    | Assumed              |
| Interest Rate                  | %                  | 10.00 | SIDBI Lending rate   |
| Estimation of Costs            |                    |       |                      |
| O & M Costs                    | % on Plant & Equip | 5.00  | Feasibility Study    |
| Annual Escalation              | %                  | 3.00  | Feasibility Study    |
| Estimation of Revenue          |                    |       |                      |
| Electricity saving             | kWh/year           | 40524 |                      |
| Cost of electricity            | ₹/kWh              | 3.85  |                      |
| St. line Depn.                 | %age               | 5.28  | Indian Companies Act |
| IT Depreciation                | %age               | 80.00 | Income Tax Rules     |
| Income Tax                     | %age               | 33.99 | Income Tax           |

## Estimation of Interest on Term Loan

(₹in lakh)

| Years | Opening Balance | Repayment | Closing Balance | Interest |
|-------|-----------------|-----------|-----------------|----------|
| 1     | 2.99            | 0.24      | 2.75            | 0.27     |
| 2     | 2.75            | 0.60      | 2.15            | 0.25     |
| 3     | 2.15            | 0.72      | 1.43            | 0.18     |
| 4     | 1.43            | 0.84      | 0.59            | 0.10     |
| 5     | 0.59            | 0.59      | 0.00            | 0.02     |
|       |                 | 2.99      |                 |          |



**WDV** Depreciation

Profit after tax (PAT)

| Particulars / years | 1    | 2    | 3    | 4    |
|---------------------|------|------|------|------|
| Plant and Machinery |      |      |      |      |
| Cost                | 3.52 | 0.70 | 0.14 | 0.03 |
| Depreciation        | 2.81 | 0.56 | 0.11 | 0.02 |
| WDV                 | 0.70 | 0.14 | 0.03 | 0.01 |

**Projected Profitability** ₹(in lakh) 2 3 4 5 Total Particulars / Years 2.13 2.13 2.13 2.13 2.13 10.66 Fuel savings 2.13 2.13 2.13 2.13 2.13 10.66 Total Revenue (A) 0.21 0.21 0.22 0.22 1.06 0.20 O & M Expenses 0.20 0.21 0.21 0.22 1.06 0.22 Total Expenses (B) 1.93 1.93 1.92 1.91 1.91 9.60 PBDIT (A)-(B) Interest 0.27 0.25 0.18 0.10 0.02 0.82 1.89 8.78 1.66 1.68 1.74 1.81 **PBDT** 0.21 0.21 0.21 0.21 0.21 1.05 Depreciation 1.47 1.53 1.60 1.68 7.73 **PBT** 1.45 0.61 0.64 0.00 0.38 0.55 2.18 Income tax

Computation of Tax ₹(in lakh) Particulars / Years 2 3 4 5 1.45 1.47 1.53 1.60 1.68 Profit before tax Add: Book depreciation 0.21 0.21 0.21 0.21 0.21 2.81 0.56 0.11 0.02 Less: WDV depreciation 1.12 1.63 1.79 1.89 Taxable profit (1.15)0.38 0.55 0.61 0.64 Income Tax

1.09

0.98

0.99

1.04

₹(in lakh)

5.55

# Projected Balance Sheet

1.45

| Particulars / Years          | 1    | 2    | 3    | 4    | 5    |
|------------------------------|------|------|------|------|------|
| Liabilities                  |      |      |      |      |      |
| Share Capital (D)            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Reserves & Surplus (E)       | 1.45 | 2.54 | 3.52 | 4.51 | 5.55 |
| Term Loans (F)               | 2.75 | 2.15 | 1.43 | 0.59 | 0.00 |
| Total Liabilities D)+(E)+(F) | 5.20 | 5.69 | 5.94 | 6.10 | 6.54 |

| Assets                   |      |      |      |      |      |
|--------------------------|------|------|------|------|------|
| Gross Fixed Assets       | 3.99 | 3.99 | 3.99 | 3.99 | 3.99 |
| Less: Accm. Depreciation | 0.21 | 0.42 | 0.63 | 0.84 | 1.05 |
| Net Fixed Assets         | 3.78 | 3.56 | 3.35 | 3.14 | 2.93 |
| Cash & Bank Balance      | 1.42 | 2.12 | 2.59 | 2.95 | 3.61 |
| TOTAL ASSETS             | 5.20 | 5.69 | 5.94 | 6.10 | 6.54 |
| Net Worth                | 2.45 | 3.54 | 4.51 | 5.51 | 6.54 |
| Dept equity ratio        | 1.12 | 0.61 | 0.32 | 0.11 | 0.00 |



## Projected Cash Flow:

₹(in lakh)

| Particulars / Years  | 0    | 1    | 2    | 3    | 4    | 5    |
|----------------------|------|------|------|------|------|------|
| Sources              |      |      |      |      |      |      |
| Share Capital        | 1.00 | ·    |      | -    |      | -    |
| Term Loan            | 2.99 |      |      |      |      |      |
| Profit After tax     |      | 1.45 | 1.09 | 0.98 | 0.99 | 1.04 |
| Depreciation         |      | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 |
| Total Sources        | 3.99 | 1.66 | 1.30 | 1.19 | 1.20 | 1.25 |
| Application          |      |      |      |      |      |      |
| Capital Expenditure  | 3.99 |      |      |      |      |      |
| Repayment of Loan    | -    | 0.24 | 0.60 | 0.72 | 0.84 | 0.59 |
| Total Application    | 3.99 | 0.24 | 0.60 | 0.72 | 0.84 | 0.59 |
| Net Surplus          | -    | 1.42 | 0.70 | 0.47 | 0.36 | 0.66 |
| Add: Opening Balance | -    | -    | 1.42 | 2.12 | 2.59 | 2.95 |
| Closing Balance      | -    | 1.42 | 2.12 | 2.59 | 2.95 | 3.61 |

Calculation of Internal Rate of Return

₹(in lakh)

| Particulars / months     | 0      | 1    | 2    | 3    | 4    | 5    |  |
|--------------------------|--------|------|------|------|------|------|--|
| Profit after Tax         |        | 1.45 | 1.09 | 0.98 | 0.99 | 1.04 |  |
| Depreciation             |        | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 |  |
| Interest on Term Loan    |        | 0.27 | 0.25 | 0.18 | 0.10 | 0.02 |  |
| Salvage/Realizable value |        |      |      |      |      |      |  |
| Cash outflow             | (3.99) | 1    | -    | -    | -    | -    |  |
| Net Cash flow            | (3.99) | 1.93 | 1.55 | 1.37 | 1.31 | 1.27 |  |
| IRR                      | 27.16% |      |      |      |      |      |  |
| NPV                      | 1.76   |      |      |      |      |      |  |

**Break Even Point** 

₹ (in lakh)

| Particulars / Years           | 1      | 2      | 3      | 4      | 5      |
|-------------------------------|--------|--------|--------|--------|--------|
| Variable Expenses             |        |        |        |        |        |
| Oper. & Maintenance Exp (75%) | 0.15   | 0.15   | 0.16   | 0.16   | 0.17   |
| Sub Total (G)                 | 0.15   | 0.15   | 0.16   | 0.16   | 0.17   |
| Fixed Expenses                |        |        |        |        |        |
| Oper. & Maintenance Exp (25%) | 0.05   | 0.05   | 0.05   | 0.05   | 0.06   |
| Interest on Term Loan         | 0.27   | 0.25   | 0.18   | 0.10   | 0.02   |
| Depreciation (H)              | 0.21   | 0.21   | 0.21   | 0.21   | 0.21   |
| Sub Total (I)                 | 0.53   | 0.51   | 0.45   | 0.37   | 0.28   |
| Sales (J)                     | 2.13   | 2.13   | 2.13   | 2.13   | 2.13   |
| Contribution (K)              | 1.98   | 1.98   | 1.97   | 1.97   | 1.96   |
| Break Even Point (L= G/I)     | 26.71% | 25.75% | 22.57% | 18.77% | 14.48% |
| Cash Break Even {(I)-(H)}     | 16.10% | 15.11% | 11.91% | 8.08%  | 3.76%  |
| BREAK EVEN SALES (J)*(L)      | 0.57   | 0.55   | 0.48   | 0.40   | 0.31   |



## Return on Investment

₹(in lakh)

| Particulars / Years     | 1    | 2    | 3    | 4    | 5    | Total |  |
|-------------------------|------|------|------|------|------|-------|--|
| Net Profit Before Taxes | 1.45 | 1.47 | 1.53 | 1.60 | 1.68 | 7.73  |  |
| Net Worth               | 2.45 | 3.54 | 4.51 | 5.51 | 6.54 | 22.55 |  |
|                         |      |      |      |      |      |       |  |

Debt Service Coverage Ratio

| ₹ | (in  | lakh)  |
|---|------|--------|
| • | ,,,, | ianii, |

| Particulars / Years   | 1    | 2    | 3    | 4    | 5    | Total |
|-----------------------|------|------|------|------|------|-------|
| Cash Inflow           |      |      |      |      |      |       |
| Profit after Tax      | 1.45 | 1.09 | 0.98 | 0.99 | 1.04 | 5.55  |
| Depreciation          | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 1.05  |
| Interest on Term Loan | 0.27 | 0.25 | 0.18 | 0.10 | 0.02 | 0.82  |
| TOTAL (M)             | 1.93 | 1.55 | 1.37 | 1.31 | 1.27 | 7.42  |

#### Debt

| Best                   |      |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Interest on Term Loan  | 0.27 | 0.25 | 0.18 | 0.10 | 0.02 | 0.82 |
| Repayment of Term Loan | 0.24 | 0.60 | 0.72 | 0.84 | 0.59 | 2.99 |
| TOTAL (N)              | 0.51 | 0.85 | 0.90 | 0.94 | 0.61 | 3.81 |
| Average DSCR (M/N)     | 1.95 |      |      |      |      |      |



## Installation of Energy Efficient Motor

| Name of the Technology         | the Technology Energy Efficient Motor |       |                      |  |  |
|--------------------------------|---------------------------------------|-------|----------------------|--|--|
| Rated Capacity                 |                                       |       |                      |  |  |
| Details                        | Unit                                  | Value | Basis                |  |  |
| Installed Capacity             |                                       |       | Feasibility Study    |  |  |
| No of working days             | Days                                  |       | Feasibility Study    |  |  |
| No of Shifts per day           | Shifts                                |       | Feasibility Study    |  |  |
| Capacity Utilization Factor    | %                                     |       | Feasibility Study    |  |  |
| Proposed Investment            |                                       |       |                      |  |  |
| Plant & Machinery              | ₹ (in lakh)                           | 1.61  | Feasibility Study    |  |  |
| Erection & Commissioning       | ₹ (in lakh)                           | 0.03  | Feasibility Study    |  |  |
| Investment without IDC         | ₹ (in lakh)                           | 1.64  | Feasibility Study    |  |  |
| Interest During Implementation | ₹ (in lakh)                           | 0.04  | Feasibility Study    |  |  |
| Taxes(VAT)                     | ₹ (in lakh)                           | 0.08  | Feasibility Study    |  |  |
| Other charges(Contingency)     | ₹ (in lakh)                           | 0.24  | Feasibility Study    |  |  |
| Total Investment               | ₹ (in lakh)                           | 2.01  | Feasibility Study    |  |  |
| Financing pattern              |                                       |       |                      |  |  |
| Own Funds (Equity)             | ₹ (in lakh)                           | 0.51  | Feasibility Study    |  |  |
| Loan Funds (Term Loan)         | ₹ (in lakh)                           | 1.50  | Feasibility Study    |  |  |
| Loan Tenure                    | years                                 | 4     | Assumed              |  |  |
| Moratorium Period              | Months                                | 6     | Assumed              |  |  |
| Repayment Period               | Months                                | 54    |                      |  |  |
| Interest Rate                  | %                                     | 10.00 | SIDBI Lending rate   |  |  |
| Estimation of Costs            |                                       |       |                      |  |  |
| O & M Costs                    | % on Plant & Equip                    | 5.00  | Feasibility Study    |  |  |
| Annual Escalation              | %                                     | 3.00  | Feasibility Study    |  |  |
| Estimation of Revenue          |                                       |       |                      |  |  |
| Electricity saving             | kWh/year                              | 14529 |                      |  |  |
| Cost of electricity            | ₹ / kWh                               | 4.05  |                      |  |  |
| St. line Depn.                 | %age                                  | 5.28  | Indian Companies Act |  |  |
| IT Depreciation                | %age                                  | 80.00 | Income Tax Rules     |  |  |
| Income Tax                     | %age                                  | 33.99 | Income Tax           |  |  |

## Estimation of Interest on Term Loan

(₹in lakh)

| Years | Opening Balance | Repayment | Closing Balance | Interest |
|-------|-----------------|-----------|-----------------|----------|
| 1     | 1.50            | 0.06      | 1.44            | 0.14     |
| 2     | 1.44            | 0.24      | 1.20            | 0.13     |
| 3     | 1.20            | 0.36      | 0.84            | 0.10     |
| 4     | 0.84            | 0.48      | 0.36            | 0.06     |
| 5     | 0.36            | 0.36      | 0.00            | 0.01     |
|       |                 | 1.50      |                 |          |



WDV Depreciation

| Particulars / years | 1    | 2    | 3    | 4    |
|---------------------|------|------|------|------|
| Plant and Machinery |      |      |      |      |
| Cost                | 1.68 | 0.34 | 0.07 | 0.01 |
| Depreciation        | 1.35 | 0.27 | 0.05 | 0.01 |
| WDV                 | 0.34 | 0.07 | 0.01 | 0.00 |

Projected Profitability

| ₹ | (i | n | la | k | h | ۱ |
|---|----|---|----|---|---|---|
| • |    | • | ıa | n | • | , |

|                        |      |      |      |      |      | iii idaaaa |
|------------------------|------|------|------|------|------|------------|
| Particulars / Years    | 1    | 2    | 3    | 4    | 5    | Total      |
| Fuel savings           | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 2.94       |
| Total Revenue (A)      | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 2.94       |
| O & M Expenses         | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | 0.53       |
| Total Expenses (B)     | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | 0.53       |
| PBDIT (A)-(B)          | 0.49 | 0.49 | 0.48 | 0.48 | 0.48 | 2.41       |
| Interest               | 0.14 | 0.13 | 0.10 | 0.06 | 0.01 | 0.45       |
| PBDT                   | 0.35 | 0.35 | 0.38 | 0.42 | 0.46 | 1.96       |
| Depreciation           | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.53       |
| PBT                    | 0.25 | 0.25 | 0.27 | 0.31 | 0.36 | 1.43       |
| Income tax             | 0.00 | 0.03 | 0.11 | 0.14 | 0.16 | 0.43       |
| Profit after tax (PAT) | 0.25 | 0.22 | 0.16 | 0.17 | 0.20 | 1.00       |

Computation of Tax

| - | / II | lak        | <b>h</b> 1 |
|---|------|------------|------------|
| • | •    | IAK        | ,,,        |
| • |      | <i>iun</i> | ,          |

| <b>-</b>               |        |      |      |      |      |
|------------------------|--------|------|------|------|------|
| Particulars / Years    | 1      | 2    | 3    | 4    | 5    |
| Profit before tax      | 0.25   | 0.25 | 0.27 | 0.31 | 0.36 |
| Add: Book depreciation | 0.11   | 0.11 | 0.11 | 0.11 | 0.11 |
| Less: WDV depreciation | 1.35   | 0.27 | 0.05 | 0.01 | -    |
| Taxable profit         | (1.00) | 0.08 | 0.32 | 0.41 | 0.46 |
| Income Tax             | ı      | 0.03 | 0.11 | 0.14 | 0.16 |

## Projected Balance Sheet

## ₹(in lakh)

| Particulars / Years          | 1    | 2    | 3    | 4    | 5    |
|------------------------------|------|------|------|------|------|
| Liabilities                  |      |      |      |      |      |
| Share Capital (D)            | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| Reserves & Surplus (E)       | 0.25 | 0.46 | 0.63 | 0.80 | 1.00 |
| Term Loans (F)               | 1.44 | 1.20 | 0.84 | 0.36 | 0.00 |
| Total Liabilities D)+(E)+(F) | 2.19 | 2.17 | 1.97 | 1.66 | 1.50 |

| Assets                   |      |      |      |      |      |
|--------------------------|------|------|------|------|------|
| Gross Fixed Assets       | 2.01 | 2.01 | 2.01 | 2.01 | 2.01 |
| Less: Accm. Depreciation | 0.11 | 0.21 | 0.32 | 0.42 | 0.53 |
| Net Fixed Assets         | 1.90 | 1.79 | 1.69 | 1.58 | 1.48 |
| Cash & Bank Balance      | 0.29 | 0.38 | 0.28 | 0.08 | 0.03 |



32

| TOTAL ASSETS      | 2.19 | 2.17 | 1.97 | 1.66 | 1.50 |
|-------------------|------|------|------|------|------|
| Net Worth         | 0.75 | 0.96 | 1.13 | 1.30 | 1.50 |
| Dept equity ratio | 1.93 | 1.25 | 0.75 | 0.28 | 0.00 |

## Projected Cash Flow:

₹(in lakh)

| Particulars / Years  | 0    | 1    | 2    | 3      | 4      | 5      |
|----------------------|------|------|------|--------|--------|--------|
| Sources              |      |      |      |        |        |        |
| Share Capital        | 0.50 | -    | -    | -      | -      | -      |
| Term Loan            | 1.50 |      |      |        |        |        |
| Profit After tax     |      | 0.25 | 0.22 | 0.16   | 0.17   | 0.20   |
| Depreciation         |      | 0.11 | 0.11 | 0.11   | 0.11   | 0.11   |
| Total Sources        | 2.01 | 0.35 | 0.32 | 0.27   | 0.28   | 0.31   |
| Application          |      |      |      |        |        |        |
| Capital Expenditure  | 2.01 |      |      |        |        |        |
| Repayment of Loan    | -    | 0.06 | 0.24 | 0.36   | 0.48   | 0.36   |
| Total Application    | 2.01 | 0.06 | 0.24 | 0.36   | 0.48   | 0.36   |
| Net Surplus          | -    | 0.29 | 0.08 | (0.09) | (0.20) | (0.05) |
| Add: Opening Balance | -    |      | 0.29 | 0.38   | 0.28   | 0.08   |
| Closing Balance      | -    | 0.29 | 0.38 | 0.28   | 0.08   | 0.03   |

#### Calculation of Internal Rate of Return

₹(in lakh)

| Particulars / months     | 0      | 1 | 2    | 3    | 4    | 5    |
|--------------------------|--------|---|------|------|------|------|
| Profit after Tax         |        |   | 0.22 | 0.16 | 0.17 | 0.20 |
| Depreciation             |        |   | 0.27 | 0.05 | 0.01 | -    |
| Interest on Term Loan    |        |   | 0.13 | 0.10 | 0.06 | 0.01 |
| Salvage/Realizable value |        |   |      |      |      |      |
| Cash outflow             |        | - | -    | -    | -    |      |
| Net Cash flow            |        |   | 0.62 | 0.32 | 0.25 | 0.21 |
| IRR                      | 29.21% |   |      |      |      |      |
| NID\/                    | 0.60   |   |      |      |      |      |

#### **Break Even Point**

₹ (in lakh)

| Particulars / Years           | 1    | 2    | 3    | 4    | 5    |
|-------------------------------|------|------|------|------|------|
| Variable Expenses             |      |      |      |      |      |
| Oper. & Maintenance Exp (75%) | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
| Sub Total (G)                 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
| Fixed Expenses                |      |      |      |      |      |
| Oper. & Maintenance Exp (25%) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
| Interest on Term Loan         | 0.14 | 0.13 | 0.10 | 0.06 | 0.01 |
| Depreciation (H)              | 1.35 | 0.27 | 0.05 | 0.01 | 0.00 |
| Sub Total (I)                 | 1.51 | 0.43 | 0.18 | 0.10 | 0.04 |
| Sales (J)                     | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 |
| Contribution (K)              | 0.51 | 0.51 | 0.51 | 0.51 | 0.50 |



| Break Even Point (L= G/I) | 293.92% | 83.88% | 36.26% | 19.89% | 7.99% |
|---------------------------|---------|--------|--------|--------|-------|
| Cash Break Even {(I)-(H)} | 16.10%  | 15.11% | 11.91% | 8.08%  | 3.76% |
| BREAK EVEN SALES (J)*(L)  | 0.57    | 0.55   | 0.48   | 0.40   | 0.31  |

| Return on Investment    |      |      |      |      |      | n lakh) |
|-------------------------|------|------|------|------|------|---------|
| Particulars / Years     | 1    | 2    | 3    | 4    | 5    | Tota    |
| Net Profit Before Taxes | 0.25 | 0.25 | 0.27 | 0.31 | 0.36 | 1.43    |

0.96

0.75

1.13

1.30

| 25 | 40 | 0,  | , |
|----|----|-----|---|
| /0 | 40 | 17/ | n |

1.50

| Debt | Service | Coverage | Ratio |
|------|---------|----------|-------|
|------|---------|----------|-------|

Net Worth

| Debt Service Coverage Rat | ₹ (ir | ı lakh) |      |      |      |       |
|---------------------------|-------|---------|------|------|------|-------|
| Particulars / Years       | 1     | 2       | 3    | 4    | 5    | Total |
| Cash Inflow               |       |         |      |      |      |       |
| Profit after Tax          | 0.25  | 0.22    | 0.16 | 0.17 | 0.20 | 1.00  |
| Depreciation              | 1.35  | 0.27    | 0.05 | 0.01 | 0.00 | 1.68  |
| Interest on Term Loan     | 0.14  | 0.13    | 0.10 | 0.06 | 0.01 | 0.45  |
| TOTAL (M)                 | 1.73  | 0.62    | 0.32 | 0.25 | 0.21 | 3.13  |

## Debt

| 2001                   |      |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Interest on Term Loan  | 0.14 | 0.13 | 0.10 | 0.06 | 0.01 | 0.45 |
| Repayment of Term Loan | 0.06 | 0.24 | 0.36 | 0.48 | 0.36 | 1.50 |
| TOTAL (N)              | 0.20 | 0.37 | 0.46 | 0.54 | 0.37 | 1.95 |
| Average DSCR (M/N)     | 1.60 |      |      |      |      |      |



# Annexure:-6 Procurement and implementation schedule For installation of VFD on agitator motors

| S. No. | Activity                                         | No. of Weeks |   |   |   |   |
|--------|--------------------------------------------------|--------------|---|---|---|---|
|        |                                                  | 1            | 2 | 3 | 4 | 5 |
| 1      | Order for supply of VFD to vendor                |              |   |   |   |   |
| 2      | Receipt of the VFD at client site                |              |   |   |   |   |
| 3      | Installation and connections for the VFD circuit |              |   |   |   |   |
| 4      | Installation of VFD in one day shut down time    |              |   |   |   |   |

## For replacement of conventional motors by energy efficient motors

| S. No. | Activity                                                                    | No. of Weeks |   |   |   |
|--------|-----------------------------------------------------------------------------|--------------|---|---|---|
|        |                                                                             | 1            | 2 | 3 | 4 |
| 1      | Order for supply of the energy efficient motors                             |              |   |   |   |
| 2      | Receipt of the energy efficient motors at client site                       |              |   |   |   |
| 3      | Replacement of the existing motors by the energy efficient motors in phases |              |   |   |   |

## For use of ON – OFF Controller system

| S. No. | Activity                                  | No. of Weeks |   |   |   |
|--------|-------------------------------------------|--------------|---|---|---|
|        |                                           | 1            | 2 | 3 | 4 |
| 1      | Order for supply of the controller system |              |   |   |   |
| 2      | Receipt of the system at client site      |              |   |   |   |
| 3      | Installation of the controller system     |              |   |   |   |



Annexure -7: Details of technology service providers

## Installation of VFD on agitator motors

| Name of Service<br>Provider        | Address                                                                                                   | Contact Person and No.                                     | Email ID            |
|------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------|
| Crystal Controls                   | 309, Abhishree complex, Opp.<br>Star India Bazar, Nr. Jodhpur<br>Char Rasta, satellite,<br>Ahmedabad – 15 | Mr. Dhanji Ghinaiya -<br>09714714192,<br>079 – 26923306    | dghinaiya@gmail.com |
| Sathguru Drives<br>& Controls      | 1-A, Second Street, Bharathi<br>Nagar, Kamarajar Road,<br>Coimbatore, Tamil Nadu, India,<br>641 001.      | Mr. S.P.Manokaran<br>(91-9843059659)<br>(91)-(422)-2593737 | sathguru@vsnl.com   |
| Hi - Rel<br>Electronics<br>Limited | B - 117/118 , G. I. D. C.<br>Electronics Zone, Sector No. 25,<br>Gandhinagar, Gujarat, India, 382<br>044. | Mr. Laxman<br>Senghani<br>09725010815                      | laxman@hirel.net    |

## Replacement of conventional motors by energy efficient motors

| Name of<br>Service<br>Provider     | Address                                                                                                                     | Contact Person and No.                     | Email ID                                                                     |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------|
| ABB Ltd                            | ABB Limited, RN Kalkaji                                                                                                     | Mr. Dinesh Mistry<br>09724334560           | dinesh.c.mistry@in.abb.com                                                   |
| LUBI Group of industries           | Lubi Group of Industries<br>Near Kalyan Mills,<br>Naroda Road,<br>Ahmedabad - 380 025<br>INDIA.                             | Mr. Ruturaj Rajaji<br>09825040538          | mktsales@lubipumps.com,<br>rporecha@lubipumps.com,<br>expsales@lubipumps.com |
| National<br>Electrical<br>Industry | 2 nd floor , vimla complex, Old<br>Sharda Mandir Rlwy Crossing,<br>Ahmedabad-380006, Gujrat ,India                          | Mr.Anuj Patel<br>9898084805                | neind@vsnl.com,<br>elmo.neind@gmail.com                                      |
| BHARAT<br>BIJLEE LTD.              | Arth, 8-Rashmi Society,<br>Behind A. K. Patel House,<br>Mithakhali, Cross Road,<br>Ahmedabad - 380 009                      | Mr. Varma<br>(sr. manager)-<br>09869271084 | anil.varma@bharatbijlee.com<br>bblahmedabad@ahd.bharatbijlee.com             |
| Siemens Ltd                        | I IA DT Regional Sales<br>3rd Floor, Prerna Arbour, Girish<br>Cold Drinks Cross Roads, Off<br>C.G.Road,<br>380009 Ahmedabad | Mr. Arvind Mehta<br>9825506565             | amey.pataskar@siemens.com,<br>prajwal.khapekar@siemens.com                   |



## Use of ON – OFF Controller system

| Name of Service<br>Provider  | Address                                                                                                      | Contact Person and No.            | Email ID           |
|------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------|
| Shiwkon Digitek Pvt. Limited | 309 - Pushpam, Opp.Seema Hall,<br>100 Feet, Shyamal - Anand Nagar<br>Road. Satellite, Ahmedabad - 380<br>015 | Mr. Hardik Patel -<br>09825050706 | hardik@shiwkon.com |



# Annexure -8: Quotations or Techno-commercial bids for new technology/equipment For Project 1: Installation of VFD on agitator motors



#### **CRYSTAL CONTROLS**

309, ABHISHREE COMPLEX, OPP. STAR INDIA BAZAR, NR. JODHPUR CHAR RASTA, SATELLITE, AHMEDABAD - 15. TELEFAX: (079) 2692 3306 (M) 98241 30299, 97147 14192 E-MAIL: crystalcontrols@gmail.com

Ref.: CC/ENE/qnt/0152/09-10 Dt.: 25/03/2010

Τo,

See-Tech Solution Pvt. Ltd.

Nagpur, Maharashtra.

Kind Attn. : Mr. Milind Chittawar

Subject : Quotation for Mitsubishi makes AC Drives.

Respected Sir,

This has reference to our telephonic discussion for above-mentioned requirement.

We are please to introduce ourselves as System Integrator for **Mitsubishi / Messung Automation** products.

We hope our product is in line with your requirement and prices quoted are attractive.

|   | Mitsubishi AC Drive Price List                                                              |                                                                   |           |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|--|--|--|--|--|
|   | <b>3.1.2 INVERTER - D -700 - Three Phase Drive</b> (I/P 400 V 3φ, O/P 400 V 3φ)             |                                                                   |           |  |  |  |  |  |
|   | (Flux Vector Control With In-Built Brake Unit 150% O/L for 60 sec. & 200% O/L for 0.5 sec.) |                                                                   |           |  |  |  |  |  |
| 1 | FR-D740-012-EC                                                                              | CAPACITY: 0.4 KW (0.5 HP) O/P CURRENT 1.2 AMPS                    | 21000     |  |  |  |  |  |
| 2 | FR-D740-022-EC                                                                              | CAPACITY: 0.75 KW (1.0 HP) O/P CURRENT 2.2 AMPS                   | 21300     |  |  |  |  |  |
| 3 | FR-D740-036-EC                                                                              | CAPACITY: 1.5 KW (2.0 HP) O/P CURRENT 3.6 AMPS                    | 26500     |  |  |  |  |  |
| 4 | FR-D740-050-EC                                                                              | CAPACITY: 2.2 KW (3.0 HP) O/P CURRENT 5.0 AMPS                    | 29900     |  |  |  |  |  |
| 5 | FR-D740-080-EC                                                                              | CAPACITY: 3.7 KW (5.0 HP) O/P CURRENT 8.0 AMPS                    | 36500     |  |  |  |  |  |
| 6 | FR-D740-120-EC                                                                              | CAPACITY: 5.5 KW (7.5 HP) O/P CURRENT 12.0 AMPS                   | 40000     |  |  |  |  |  |
| 7 | FR-D740-160-EC                                                                              | CAPACITY: 7.5 KW (10.0 HP) O/P CURRENT 16.0 AMPS                  | 45000     |  |  |  |  |  |
|   | 3.1.2 INVER                                                                                 | TER - E -700 - Three Phase Drive (I/P 400 V 3ф, O/P 400           | V 3φ)     |  |  |  |  |  |
|   | (Advance Flux Ve                                                                            | ctor Control With In-Built Brake Unit 150% O/L for 60 sec. & 2009 | % O/L for |  |  |  |  |  |
|   |                                                                                             | 03 sec.)                                                          |           |  |  |  |  |  |
| 1 | FR-E740-016-EC                                                                              | CAPACITY: 0.4 KW (0.5 HP) O/P CURRENT 1.6 AMPS                    | 29000     |  |  |  |  |  |
| 2 | FR-E740-026-EC                                                                              | CAPACITY: 0.75 KW (1.0 HP) O/P CURRENT 2.6 AMPS                   | 29500     |  |  |  |  |  |
| 3 | FR-E740-040-EC                                                                              | CAPACITY: 1.5 KW (2.0 HP) O/P CURRENT 4.0 AMPS                    | 33000     |  |  |  |  |  |
| 4 | FR-E740-060-EC                                                                              | CAPACITY: 2.2 KW (3.0 HP) O/P CURRENT 6.0 AMPS                    | 37500     |  |  |  |  |  |
| 5 | FR-E740-095-EC                                                                              | CAPACITY: 3.7 KW (5.0 HP) O/P CURRENT 9.5 AMPS                    | 42500     |  |  |  |  |  |
| 6 | FR-E740-120-EC                                                                              | CAPACITY: 5.5 KW (7.5 HP) O/P CURRENT 12.0 AMPS                   | 52500     |  |  |  |  |  |
| 7 | FR-E740-170-EC                                                                              | CAPACITY: 7.5 KW (10.0 HP) O/P CURRENT 17.0 AMPS                  | 65000     |  |  |  |  |  |
| 8 | FR-E740-230-EC                                                                              | CAPACITY: 11 KW (15.0 HP) O/P CURRENT 23.0 AMPS                   | 78000     |  |  |  |  |  |
| 9 | FR-E740-300-EC                                                                              | CAPACITY: 15 KW (20.0 HP) O/P CURRENT 30.0 AMPS                   | 81000     |  |  |  |  |  |





## For Project 2: Replacement of conventional motors by energy efficient motors







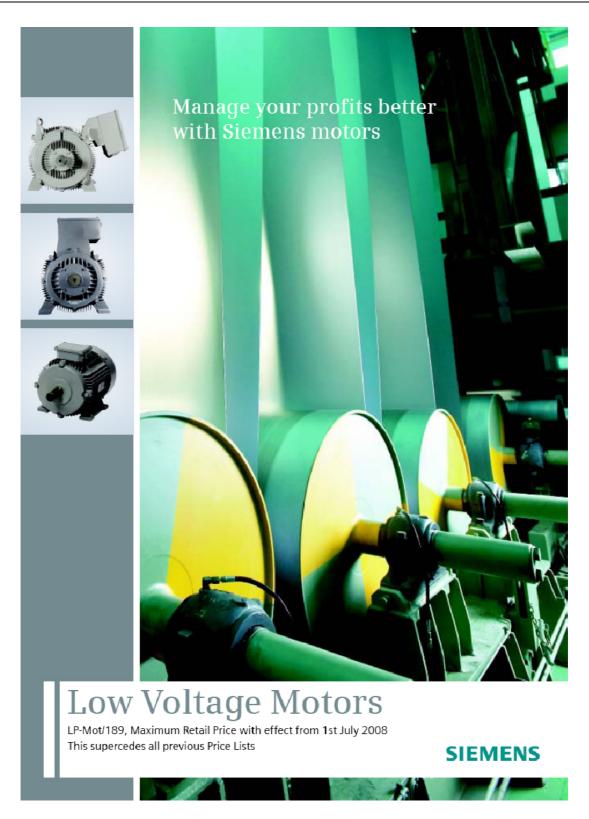


#### TEFC ENERGY EFFICIENT MOTORS

For Foot mounted (B3 construction) Induction Motors suitable for 415V ±10%, 50Hz ±5%, combined variation ±10%, 3 phase supply, Insulation Class F, Degree of Protection IP55, Ambient Temperature 50° C, Conforms to IS:325

|        |        | 300   | 0 rpm 2 Pole |        |        |
|--------|--------|-------|--------------|--------|--------|
| kW     | HP     | Frame | Type         | Price  | Excise |
|        |        |       |              |        |        |
| 0.37   | 0.50   | 71    | MH0712A3     | 8330   | 343    |
| 0.55   | 0.75   | 71    | MH071233     | 9200   | 379    |
| 0.75   | 1.00   | 80    | MH080213     | 9530   | 393    |
| 1.10   | 1.50   | 80    | MH080233     | 10410  | 429    |
| 1.50   | 2.00   | 905   | MH09S243     | 11530  | 475    |
| 2.20   | 3.00   | 90L   | MH09L273     | 14750  | 608    |
| 3.70   | 5.00   | 100L  | MH10L233     | 18120  | 747    |
| 5.50   | 7.50   | 1325  | MH13S253     | 27750  | 1143   |
| 7'.50  | 10.00  | 1325  | MH13S293     | 30660  | 1263   |
| 9.30   | 12.50  | 160M  | MH16M233     | 49940  | 2058   |
| 11.00  | 15.00  | 160M  | MH16M253     | 53550  | 2206   |
| 15.00  | 20.00  | 160M  | MH16M263     | 62740  | 2585   |
| 18.50  | 25.00  | 160L  | MH16L293     | 85130  | 3507   |
| 22.00  | 30.00  | 180M  | MH18M233     | 90760  | 3739   |
| 30.00  | 40.00  | 200L  | MH20L2A3     | 128880 | 5310   |
| 37.00  | 50.00  | 200L  | MH20L253     | 164550 | 6779   |
| 45.00  | 60.00  | 225M  | MH22M253     | 211750 | 8724   |
| 55.00  | 75.00  | 250M  | MH25M233     | 272100 | 11211  |
| 75.00  | 100.00 | 280S  | MH28S233     | 354180 | 14592  |
| 90.00  | 120.00 | 280M  | MH28M253     | 410590 | 16916  |
| 110.00 | 150.00 | 3155  | MH31S233     | 517540 | 21323  |
| 125.00 | 170.00 | 315M  | MH31M2A3     | 607490 | 25029  |
| 132.00 | 180.00 | 315M  | MH31M233     | 636600 | 26228  |
| 150.00 | 200.00 | 315L  | MH31L2A3     | 673020 | 27728  |
| 160.00 | 215.00 | 315L  | MH31L253     | 697350 | 28731  |
| 180.00 | 240.00 | 315L  | MH31L2B3     | 733810 | 30233  |
| 200.00 | 270.00 | 315L  | MH31L273     | 817720 | 33690  |
| 250.00 | 335.00 | 355L  | MH35L213     | 907180 | 37376  |
| 315.00 | 425.00 | 355L  | MH35L233     | 988310 | 40718  |

| * These ratings are sutiable fo                     | Ambient Temperature 45 Oc |
|-----------------------------------------------------|---------------------------|
| <ul> <li>In lese ratings are suttable to</li> </ul> | Ambient Temperature 45 °C |


|        | 1500 rpm 4 Pole |       |          |         |        |  |  |
|--------|-----------------|-------|----------|---------|--------|--|--|
| kW     | HP              | Frame | Type     | Price   | Excise |  |  |
|        |                 |       |          |         |        |  |  |
| 0.37   | 0.50            | 71    | MH071433 | 8800    | 363    |  |  |
| 0.55   | 0.75            | 80    | MH080433 | 9800    | 404    |  |  |
| 0.75   | 1.00            | 80    | MH080453 | 9870    | 407    |  |  |
| 1.10   | 1.50            | 905   | MH09S423 | 10770   | 444    |  |  |
| 1.50   | 2.00            | 90L   | MH09L473 | 11770   | 485    |  |  |
| 2.20   | 3.00            | 100L  | MH10L473 | 15570   | 641    |  |  |
| 3.70   | 5.00            | 112M  | MH11M473 | 19920   | 821    |  |  |
| 5.50   | 7.50            | 132S  | MH13S473 | 27450   | 1131   |  |  |
| 7.50   | 10.00           | 132M  | MH13M443 | 32050   | 1321   |  |  |
| 9.30   | 12.50           | 160M  | MH16M4C3 | 49980   | 2059   |  |  |
| 11.00  | 15.00           | 160M  | MH16M4K3 | 51290   | 2113   |  |  |
| 15.00  | 2000            | 160L  | MH16L4B3 | 63750   | 2627   |  |  |
| 18.50  | 2500            | 180M  | MH18M473 | 86000   | 3543   |  |  |
| 22.00  | 3000            | 180L  | MH18L483 | 91640   | 3776   |  |  |
| 30.00  | 4000            | 200L  | MH20L453 | 123630  | 5094   |  |  |
| 37.00  | 50.00           | 225S  | MH22S433 | 158820  | 6543   |  |  |
| 45.00  | 6000            | 225M  | MH22M453 | 192560  | 7933   |  |  |
| 55.00  | 7500            | 250M  | MH25M433 | 252410  | 10399  |  |  |
| 75.00  | 100.00          | 280S  | MH28S413 | 323100  | 13312  |  |  |
| 90.00  | 120.00          | 280M  | MH28M433 | 374860  | 15444  |  |  |
| 110.00 | 150.00          | 315S  | MH31S413 | 453850  | 18699  |  |  |
| 125.00 | 170.00          | 315M  | MH31M4A3 | 519210  | 21391  |  |  |
| 132.00 | 180.00          | 315M  | MH31M433 | 532430  | 21936  |  |  |
| 150.00 | 200.00          | 315L  | MH31L4A3 | 575440  | 23708  |  |  |
| 160.00 | 215.00          | 315L  | MH31L453 | 597500  | 24617  |  |  |
| 180.00 | 240.00          | 315L  | MH31L463 | 666380  | 27455  |  |  |
| 200.00 | 270.00          | 315L  | MH31L473 | 760630  | 31338  |  |  |
| 250.00 | 335.00          | 355L  | MH35L413 | 801270  | 33012  |  |  |
| 315.00 | 422.00          | 355L  | MH35L433 | 959620  | 39536  |  |  |
| 355.00 | 480.00          | 355L  | MH35L453 | 1235380 | 50898  |  |  |
| 400.00 | 540.00          | 400M  | MH40M413 | 1694940 | 69832  |  |  |
| 450.00 | 600.00          | 400M  | MH40M433 | 1749430 | 72077  |  |  |
| 500.00 | 670.00          | 400M  | MH40M453 | 1816890 | 74856  |  |  |
| 560.00 | 750.00          | 400L  | MH40L473 | 1913520 | 78837  |  |  |
| 630.00 | 850.00          | 400L  | MH40L493 | 1970350 | 81178  |  |  |



Increased Sa fety Ex 'e', Non Sparking Ex 'n' can be offered upto 355 Frame.For Price & frame size refer to Marketing Office

Eff1 will be punched on name plate as per IS 12615: 2004 for 2 Pole -0.37kW to 160 kW 4Pole -0.37kW to 160kW

6 Pole -0.37kW to 132 kW 8Pole -0.37kW to 110kW









## CHAMPION Series. Degree of Prot. IP55, Ins Class 'F'. Ambient 50°C 415V $\pm$ 10%, 50Hz $\pm$ 5%, combined $\pm$ 10%. Prices for IMB3 (foot mounted) versions.

| 2 - Pole 300 | 2 - Pole 3000 rev/min |            |                          |                          |  |  |
|--------------|-----------------------|------------|--------------------------|--------------------------|--|--|
| Out          |                       | Frame size | Type reference<br>(MLFB) | Unit MRP<br>for standard |  |  |
| kW           | HP                    |            | ()                       | motor Rs.                |  |  |
| 240VA / 41   | 5VY 50Hz              |            |                          |                          |  |  |
|              |                       |            |                          |                          |  |  |
| 0.18         | 0.25                  | 63         | 1LA0 060-2YA30           | 5,960                    |  |  |
| 0.25         | 0.35                  | 63         | 1LA0 063-2YA80           | 6,130                    |  |  |
| 0.37         | 0.5                   | 71         | 1LA0 070-2YA30           | 6,500                    |  |  |
| 0.55         | 0.75                  | 71         | 1LA0 073-2YA80           | 7,210                    |  |  |
| 0.75         | 1                     | 80         | 1LA0 080-2YA30           | 7,460                    |  |  |
| 1.1          | 1.5                   | 80         | 1LA0 083-2YA30           | 8,150                    |  |  |
| 1.5          | 2                     | 90S        | 1LA0 090-2YA30           | 9.040                    |  |  |
| 415V∆ 50H    | z                     |            |                          |                          |  |  |
| 2.2          | 3                     | 90L        | 1LA0 096-2YA30           | 11,580                   |  |  |
| 3.7          | 5                     | 100L       | 1LA0 107-2YA30           | 14,260                   |  |  |
| 5.5          | 7.5                   | 112M       | 1LA0 114-2YA30           | 21,880                   |  |  |
| 7.5          | 10                    | 1325       | 1LA0 131-2YA80           | 24,170                   |  |  |
| 9.3          | 12.5                  | 132M       | 1LA0 133-2YA80           | 39,410                   |  |  |
| 11           | 15                    | 160M       | 1LA0 161-2YC30           | 42,210                   |  |  |
| 15           | 20                    | 160M       | 1LA0 165-2YC80#          | 49,450                   |  |  |
| 18.5         | 25                    | 160L       | 1LA0 166-2YC80#          | 6/,110                   |  |  |
| 22           | 30                    | 180M       | 1LA0 183-2YA80#          | 74,990                   |  |  |
| 30           | 40                    | 200L       | 1LA0 207-2YB30           | 106,360                  |  |  |
| 37           | 50                    | 2001       | 11A0 208-2YB80#          | 135,970                  |  |  |
| 45           | 60                    | 225M       | 1LA0 223-2YB80           | 174,270                  |  |  |

| 4 - Pole 150      |          |               |                |                           |
|-------------------|----------|---------------|----------------|---------------------------|
| Out               | tput     | Frame<br>size | Type reference | Unit MRP                  |
| kW                | HP       | SIZC          | (MLFB)         | for standard<br>motor Rs. |
| -1000000          | 100 1000 |               |                | motor ns.                 |
| 240V∆ / 41        |          |               |                |                           |
| 0.12              | 0.15     | 63            | 1LA0 060-4YA80 | 6,250                     |
| 0.18              | 0.25     | 63            | 1LA0 063-4YA80 | 6,590                     |
| 0.25              | 0.35     | 71            | 1LA0 070-4YA80 | 6,700                     |
| 0.37              | 0.5      | 71            | 1LA0 073-4YA80 | 6,950                     |
| 0.55              | 0.75     | 50            | 1LA0 080-4YA80 | 7,690                     |
| 0.75              | 1        | 80            | 1LA0 083-4YA80 | 7,770                     |
| 1.1               | 1.5      | 90S           | 1LA0 090-4YA80 | 8,530                     |
| 1.5               | 2        | 90L           | 1LA0 096-4YA80 | 9.280                     |
| 415V <u>∆</u> 50H | z        |               |                |                           |
| 2.2               | 3        | 100L          | 1LA0 10G-4YA80 | 12,280                    |
| 3                 | 4        | 100L          | 1LA0 107-4YA80 | 12,530                    |
| 3.7               | 5        | 112M          | 1LA0 113-4YA80 | 15,800                    |
| 5.5               | 7.5      | 132S          | 1LA0 130-4YA80 | 21,690                    |
| 7.5               | 10       | 132M          | 1LA0 133-4YA80 | 25,300                    |
| 11                | 15       | 160M          | 1LA0 163-4YA80 | 40,190                    |
| 15                | 20       | 160L          | 1LA0 166-4YA80 | 50,040                    |
| 18.5              | 25       | 180M          | 1LA0 183-4YA80 | /0,/60                    |
| 22                | 30       | 180L          | 1LA0 186-4YA80 | 75,380                    |
| 30                | 40       | 200L          | 1LA0 207-4YA80 | 101,860                   |
| 37                | 50       | 2255          | 1LA0 221-4YA80 | 130,590                   |
| 45                | 60       | 225M          | 1LA0 224-4YA80 | 158,460                   |

<sup>#</sup>Temperature rise limited to 75K & @ Temp. rise limited to 95K.

Note: Efficiency class will be stamped on the name-plates for motors covered under IS:12615 - 2004 only.









#### CHAMPION Series. Degree of Prot. IP55, Ins Class 'F'. Ambient 50°C 415V $\pm$ 10%, 50Hz $\pm$ 5%, combined $\pm$ 10%. Prices for IMB3 (foot mounted) versions.

All our standard designs in frames 250 and above now conform to EFF1 as per standards

| 2 - Pole 30 | 000 rev/min |       |                 |                           |
|-------------|-------------|-------|-----------------|---------------------------|
| 0.          | utput       | Frame | Type reference  | Unit MRP                  |
| kW          | HP          | size  | (MLFB)          | for standard<br>motor Rs. |
| 415V∆ 50    | Hz          |       |                 |                           |
| 55          | 75          | 250M  | 1SE0 254-2YB80  | 234,020                   |
| 75          | 100         | 280S  | 1SE0 281-2YB80  | 305,490                   |
| 90          | 120         | 280M  | 1SE0 284-2YB80  | 353,940                   |
| 110         | 150         | 315S  | 1SE0 311-2YC80  | 466,050                   |
| 132         | 180         | 315M  | 1SE0 314-2YC80  | 573,240                   |
| 160         | 215         | 315L  | 1SE0 318-2YC80  | 627,710                   |
| 200         | 270         | 315L  | 1SE0 319-2YC80@ | 733,170                   |
| 250         | 335         | 355L  | 1SE0 356-2YC80  | 820,100                   |
| 315         | 425         | 355L  | 1SE0 357-2YC80# | 904,840                   |

| 4 - Pole 15 | 500 rev/min |       |                 |                           |  |  |
|-------------|-------------|-------|-----------------|---------------------------|--|--|
| Ot          | utput       | Frame | Type reference  | Unit MRP                  |  |  |
| kW          | HP          | size  | (MLFB)          | for standard<br>motor Rs. |  |  |
| 415V∆ 50    | 415V∆ 50Hz  |       |                 |                           |  |  |
| 55          | 75          | 250M  | 1SE0 254-4YA80  | 218,450                   |  |  |
| 75          | 100         | 280S  | 1SE0 281-4YA80  | 279,570                   |  |  |
| 90          | 120         | 280M  | 1SE0 284-4YA80  | 324,420                   |  |  |
| 110         | 150         | 315S  | 1SE0 311-4YA80  | 408,600                   |  |  |
| 132         | 180         | 315M  | 1SE0 314-4YA80  | 479,230                   |  |  |
| 160         | 215         | 315L  | 1SE0 318-4YA80  | 535,790                   |  |  |
| 200         | 270         | 315L  | 1SE0 319-4YA80@ | 685,150                   |  |  |
| 250         | 335         | 355L  | 1SE0 356-4YB80  | 732,940                   |  |  |
| 315         | 425         | 355L  | 1SE0 357-4YB80  | 862,680                   |  |  |

| 6 - Pole 10 | 6 - Pole 1000 rev/min |       |                |                           |  |  |
|-------------|-----------------------|-------|----------------|---------------------------|--|--|
| Output      |                       | Frame | Type reference | Unit MRP                  |  |  |
| kW          | HP                    | size  | (MLFB)         | for standard<br>motor Rs. |  |  |
| 415V∆ 50H   | z                     |       |                |                           |  |  |
|             |                       |       |                |                           |  |  |
| 37          | 50                    | 250M  | 1SE0 254-6YA80 | 219,180                   |  |  |
| 45          | 60                    | 2805  | 1SE0 281-6YA80 | 280,850                   |  |  |
| 55          | 75                    | 280M  | 1SE0 284-6YA80 | 317,300                   |  |  |
| 75          | 100                   | 315S  | 1SE0 311-6YA80 | 390,540                   |  |  |
| 90          | 120                   | 315M  | 1SE0 314-6YA80 | 491,740                   |  |  |
| 110         | 150                   | 315L  | 1SE0 318-6YA80 | 548,060                   |  |  |
| 132         | 180                   | 315L  | 1SE0 319-6YB00 | 637,870                   |  |  |
| 160         | 215                   | 355L  | 1SE0 356-6YB80 | 694,580                   |  |  |
| 200         | 270                   | 355L  | 1SE0 357-6YB80 | 762,690                   |  |  |
| 250         | 335                   | 355L  | 1SE0 358-6YB80 | 822,000                   |  |  |

| 8 - Pole 750 rev/min |            |       |                |                           |  |  |
|----------------------|------------|-------|----------------|---------------------------|--|--|
| Ou                   | tput       | Frame | Type reference | Unit MRP                  |  |  |
| kW                   | HP         | size  | (MLFB)         | for standard<br>motor Rs. |  |  |
| 415V∆ 50H            | 415V∆ 50Hz |       |                |                           |  |  |
| 30                   | 40         | 250M  | 1SE0 254-8YB80 | 223,590                   |  |  |
| 37                   | 50         | 280S  | 1SE0 281-8YB80 | 285,930                   |  |  |
| 45                   | 60         | 280M  | 1SE0 284-8YB80 | 331,610                   |  |  |
| 55                   | 75         | 315S  | 1SE0 311-8YB80 | 398,420                   |  |  |
| 75                   | 100        | 315M  | 1SE0 314-8YB80 | 501,410                   |  |  |
| 90                   | 120        | 315L  | 1SE0 318-8YB80 | 563,270                   |  |  |
| 110                  | 150        | 315L  | 1SE0 319-8YB80 | 593,050                   |  |  |
| 132                  | 180        | 355L  | 1SE0 356-8YB80 | 731,980                   |  |  |
| 160                  | 215        | 355L  | 1SE0 357-8YB80 | 807,950                   |  |  |
| 200                  | 270        | 355L  | 1SE0 358-8YB80 | 844,710                   |  |  |
|                      |            |       |                |                           |  |  |

<sup>#</sup> Temperature rise limited to 75K & @ Temp. rise limited to 95K.

Note: Efficiency class will be stamped on the name-plates for motors covered under IS:12615 - 2004 only.



CE

1PQ8 Series - Separately Cooled. Degree of Prot. IP55, Ins Class 'F'. 415V  $\pm$ 10%, 50Hz  $\pm$ 5%, combined  $\pm$ 10%. Cooling IC 416.

Prices for IMB3 (foot mounted) versions. Amb. 40°C (Temp rise 105K)

| 2 - Pole 3000 rev/min |               |                          |                                       |  |  |  |  |
|-----------------------|---------------|--------------------------|---------------------------------------|--|--|--|--|
| Output<br>kW          | Frame<br>size | Type reference<br>(MLFB) | Unit MRP<br>for standard<br>motor Rs. |  |  |  |  |
| 415V∆ 50Hz            |               |                          |                                       |  |  |  |  |
| 250                   | 315           | 1PQ8 315-2PC70           | 982,720                               |  |  |  |  |
| 315                   | 315           | 1PQ8 317-2PC70           | 1,151,810                             |  |  |  |  |
| 355                   | 355           | TPQ8 353-2PC70           | 1,401,320                             |  |  |  |  |
| 400                   | 355           | 1PQ8 355-2PC70           | 1.462.640                             |  |  |  |  |
| 500                   | 355           | 1PQ8 357-2PC70           | 1,585,870                             |  |  |  |  |

| 4 - Pole 1500 rev/min |               |                          |                                       |  |  |  |  |
|-----------------------|---------------|--------------------------|---------------------------------------|--|--|--|--|
| Output<br>kW          | Frame<br>size | Type reference<br>(MLFB) | Unit MRP<br>for standard<br>motor Rs. |  |  |  |  |
| 415V∆ 50Hz            |               |                          |                                       |  |  |  |  |
| 250                   | 315           | 1PQ8 315-4PB70           | 892,600                               |  |  |  |  |
| 315                   | 315           | 1PQ8 317-4PB70           | 1,028,460                             |  |  |  |  |
| 355                   | 355           | 1PQ8 353-4P870           | 1,176,970                             |  |  |  |  |
| ·400                  | 355           | 1PQ8 355-4P870           | 1,286,030                             |  |  |  |  |
| 500                   | 355           | 1PQ8 357-4PB70           | 1,4G3,090                             |  |  |  |  |
| 560                   | 400           | 1PQ8 403-4YP70           | 1,646,800                             |  |  |  |  |
| 630                   | 400           | 1PQ8 405-4PB70           | 1,798,310                             |  |  |  |  |
| 675 ^                 | 400           | 1PQ8 407-4PB00           | 1,966,720                             |  |  |  |  |
| 760 *                 | 450           | 1PQ8 453-4PD00           | on Enquiry                            |  |  |  |  |
| 850 *                 | 450           | 1PQ8 455-4PD00           | on Enquiry                            |  |  |  |  |
| 950 *                 | 450           | 1PQ8 457-4PD00           | on Enquiry                            |  |  |  |  |
| 1060 *                | 500           | 1PQ8 458-4PD00           | on Enquiry                            |  |  |  |  |
| 1180 *                | 500           | 1PQ8 459-4PD00           | on Enquiry                            |  |  |  |  |

|        | 6 - Pole 1000 rev/min |               |                          |                                       |  |  |  |
|--------|-----------------------|---------------|--------------------------|---------------------------------------|--|--|--|
|        | Output<br>kW          | Frame<br>size | Type reference<br>(MLFB) | Unit MRP<br>for standard<br>motor Rs. |  |  |  |
|        | 415VA 50Hz            |               |                          |                                       |  |  |  |
|        | 200                   | 315           | 1PQ8 315-6PB70           | 885,700                               |  |  |  |
|        | 250                   | 315           | 1PQ8 317-6PB70           | 944,860                               |  |  |  |
|        | 315                   | 355           | 1PQ8 355-6YP70           | 1,252,100                             |  |  |  |
|        | 400                   | 355           | 1PQ8 357-6PB70           | 1,432,560                             |  |  |  |
|        | 450                   | 400           | 1PQ8 403-6AD70           | on Enquiry                            |  |  |  |
|        | 500                   | 400           | 1PQ8 405-6AD70           | on Enquiry                            |  |  |  |
|        | 560                   | 400           | 1PQ8 407-6AD70           | on Enquiry                            |  |  |  |
| Nev    | 630                   | 450           | 1PQ8 453-6AD70           | on Enquiry                            |  |  |  |
| Z IVEV | 670 *                 | 450           | 1PQ8 455-6AD00           | on Enquiry                            |  |  |  |
|        | 760 *                 | 450           | 1PQ8 457-6AD00           | on Enquiry                            |  |  |  |
|        | 850 *                 | 500           | 1PQ8 458-6AD00           | on Enquiry                            |  |  |  |
|        | 950 *                 | 500           | 1PQ8 459-6AD00           | on Enquiry                            |  |  |  |

| 8 - Pole 750 rev/min |               |                          |                                       |  |  |  |  |
|----------------------|---------------|--------------------------|---------------------------------------|--|--|--|--|
| Output<br>kW         | Frame<br>size | Type reference<br>(MLHB) | Unit MRP<br>for standard<br>motor Rs. |  |  |  |  |
| 415V∆ 50Hz           |               |                          |                                       |  |  |  |  |
| 160                  | 315           | 1PQ8 315-8PB70           | 930,850                               |  |  |  |  |
| 200                  | 315           | 1PQ8 317-8PB70           | 967,510                               |  |  |  |  |
| 250                  | 355           | 1PQ8 355-8YP70           | 1,252,300                             |  |  |  |  |
| 315                  | 355           | 1PQ8 357-8PB70           | 1,428,540                             |  |  |  |  |
| 355                  | 400           | 1PQ8 403-8PD70           | on Enquiry                            |  |  |  |  |
| 400                  | 400           | 1PQ8 405-8PD70           | on Enquiry                            |  |  |  |  |
| 450                  | 450           | 1PQ8 407-8PD70           | on Enquiry                            |  |  |  |  |
| 500                  | 450           | 1PQ8 453-8PD70           | on Enquiry                            |  |  |  |  |
| 560                  | 450           | 1PQ8 455-8PD70           | on Enquiry                            |  |  |  |  |
| 630                  | 450           | 1PQ8 457-8PD70           | on Enquiry                            |  |  |  |  |
| 670 ^                | 500           | 1PQ8 458-8PD00           | on Enquiry                            |  |  |  |  |
| 750 *                | 500           | 1PQ8 459-8PD00           | on Enquiry                            |  |  |  |  |



CE

1PQ0 Series - SEPARATELY COOLED. Degree of Prot. IP54, Ins Class 'F'. Ambient 50°C 415V  $\pm$ 10%, 50Hz  $\pm$  5%, combined  $\pm$ 10%. Prices for IMB3 (foot mounted) versions. Cooling IC 416

| 2 - Pole 3 | 2 - Pole 3000 rev/min |               |                          |                          |  |  |  |
|------------|-----------------------|---------------|--------------------------|--------------------------|--|--|--|
| Out        | put                   | Frame<br>size | Type reference<br>(MLFB) | Unit MRP<br>for standard |  |  |  |
| kW         | HP                    | 3120          | (MLI b)                  | motor Rs.                |  |  |  |
| 415V∆ 50   | Hz                    |               |                          |                          |  |  |  |
| 11         | 15                    | 160M          | 1PQ0 164-2YC80           | 69,600                   |  |  |  |
| 15         | 20                    | 160M          | 1PQ0 165-2YC80#          | 76,120                   |  |  |  |
| 18.5       | 25                    | 160L          | 1PQ0 166-2YC80#          | 95,920                   |  |  |  |
| 22         | 30                    | 180M          | 1PQ0 183-2YA80#          | 106,450                  |  |  |  |
| 30         | 40                    | 200L          | 1PQ0 207-2YB80           | 148,890                  |  |  |  |
| 37         | 50                    | 200L          | 1PQ0 208-2YB80#          | 180,810                  |  |  |  |
| 45         | 60                    | 225M          | 1PQ0 223-2YB80           | 226,110                  |  |  |  |
| 55         | 75                    | 250M          | 1PQ0 254-2YB80           | 292,860                  |  |  |  |
| 75         | 100                   | 2805          | 1PQ0 281-2YB80           | 380,030                  |  |  |  |
| 90         | 120                   | 280M          | 1PQ0 284-2YB80           | 433,320                  |  |  |  |
| 110        | 150                   | 3155          | 1PQ0 311-2YC80           | 558,470                  |  |  |  |
| 132        | 180                   | 315M          | 1PQ0 314-2YC80           | 676,320                  |  |  |  |
| 160        | 215                   | 315L          | 1PQ0 318-2YC80           | 736,220                  |  |  |  |
| 180        | 240                   | 315L          | 1PQ0 319-2YC80@          | 860,740                  |  |  |  |
| 250        | 335                   | 355L          | 1PQ0 356-2YC80           | 962,800                  |  |  |  |
| 315        | 425                   | 355L          | 1PQ0 357-2YC80#          | 1,062,290                |  |  |  |

| 4 - Pole 1500 rev/min |     |               |                          |                          |  |  |  |  |
|-----------------------|-----|---------------|--------------------------|--------------------------|--|--|--|--|
| Out                   | put | Frame<br>size | Type reference<br>(MLFB) | Unit MRP<br>for standard |  |  |  |  |
| kW                    | HP  | 3120          | (WEI 5)                  | motor Rs.                |  |  |  |  |
| 415V∆ 50Hz            |     |               |                          |                          |  |  |  |  |
| 11                    | 15  | 160M          | 1PQ0 163-4YA80           | 68,880                   |  |  |  |  |
| 15                    | 20  | 160L          | 1PQ0 166-4YA80           | 79,730                   |  |  |  |  |
| 18.5                  | 25  | 180M          | 1PQ0 183-4YA80           | 103,260                  |  |  |  |  |
| 22                    | 30  | 180L          | 1PQ0 186-4YA80           | 108,360                  |  |  |  |  |
| 30                    | 40  | 200L          | 1PQ0 207-4YA80           | 145,700                  |  |  |  |  |
| 37                    | 50  | 2255          | 1PQ0 221-4YA80           | 178,040                  |  |  |  |  |
| 45                    | 60  | 225M          | 1PQ0 224-4YA80           | 208,710                  |  |  |  |  |
| 55                    | 75  | 250M          | 1PQ0 254-4YA80           | 275,730                  |  |  |  |  |
| 75                    | 100 | 2805          | 1PQ0 281-4YA80           | 351,540                  |  |  |  |  |
| 90                    | 120 | 280M          | 1PQ0 284-4YA80           | 400,840                  |  |  |  |  |
| 110                   | 150 | 3155          | 1PQ0 311-4YA80           | 495,280                  |  |  |  |  |
| 132                   | 180 | 315M          | 1PQ0 314-4YA80           | 572,950                  |  |  |  |  |
| 160                   | 215 | 315L          | 1PQ0 318-4YA80           | 635,140                  |  |  |  |  |
| 180                   | 240 | 315L          | 1PQ0 319-4YA80@          | 804,370                  |  |  |  |  |
| 250                   | 335 | 355L          | 1PQ0 356-4YB80           | 860,470                  |  |  |  |  |
| 315                   | 425 | 355L          | 1PQ0 357-4YB80           | 1,012,790                |  |  |  |  |

| 6 - Pole 1000 rev/min |     |       |                 |              |  |  |  |
|-----------------------|-----|-------|-----------------|--------------|--|--|--|
| Out                   | put | Frame | Type reference  | Unit MRP     |  |  |  |
| kW                    | HP  | size  | (MLFB)          | for standard |  |  |  |
| N. V.                 | 111 |       |                 | motor Rs.    |  |  |  |
| 415V∆ 50              | Hz  |       |                 |              |  |  |  |
| 7.5                   | 10  | 160M  | 1PQ0 163-6YB80  | 70,280       |  |  |  |
| 11                    | 15  | 160L  | 1PQ0 166-6YB80  | 81,380       |  |  |  |
| 15                    | 20  | 180L  | 1PQ0 186-6YA80  | 106,870      |  |  |  |
| 18.5                  | 25  | 200L  | 1PQ0 206-6YA80  | 139,830      |  |  |  |
| 22                    | 30  | 200L  | 1PQ0 207-6YA80  | 148,920      |  |  |  |
| 30                    | 40  | 225M  | 1PQ0 223-6YA80# | 213,940      |  |  |  |
| 37                    | 50  | 250M  | 1PQ0 254-6YA80  | 276,530      |  |  |  |
| 45                    | 60  | 280S  | 1PQ0 281-6YA80  | 352,950      |  |  |  |
| 55                    | 75  | 280M  | 1PQ0 284-6YA80  | 393,010      |  |  |  |
| 75                    | 100 | 315S  | 1PQ0 311-6YA80  | 475,410      |  |  |  |
| 90                    | 120 | 315M  | 1PQ0 314-6YA80  | 586,700      |  |  |  |
| 110                   | 150 | 315L  | 1PQ0 318-6YA80  | 648,640      |  |  |  |
| 132                   | 180 | 315L  | 1PQ0 319-6YB00  | 747,410      |  |  |  |
| 160                   | 215 | 355L  | 1PQ0 356-6YB80  | 815,440      |  |  |  |
| 200                   | 270 | 355L  | 1PQ0 357-6YB80  | 895,400      |  |  |  |
| 250                   | 335 | 355L  | 1PQ0 358-6YB80  | 965,030      |  |  |  |

| 8 - Pole 750 rev/min |     |               |                          |                          |  |  |
|----------------------|-----|---------------|--------------------------|--------------------------|--|--|
| Output               |     | Frame<br>size | Type reference<br>(MLFB) | Unit MRP<br>for standard |  |  |
| kW                   | HP  |               | (                        | motor Rs.                |  |  |
| 415V∆ 50             | Hz  |               |                          |                          |  |  |
| 7.5                  | 10  | 160L          | 1PQ0 166-8YB80           | 82,540                   |  |  |
| 11                   | 15  | 180L          | 1PQ0 186-8YB80           | 108,490                  |  |  |
| 15                   | 20  | 200L          | 1PQ0 207-8YB80           | 151,210                  |  |  |
| 18.5                 | 25  | 2255          | 1PQ0 220-8YB80           | 185,640                  |  |  |
| 22                   | 30  | 225M          | 1PQ0 223-8YB80           | 217,560                  |  |  |
| 30                   | 40  | 250M          | 1PQ0 254-8YB80           | 281,380                  |  |  |
| 37                   | 50  | 2805          | 1PQ0 281-8YB80           | 358,510                  |  |  |
| 45                   | 60  | 280M          | 1PQ0 284-8YB80           | 408,760                  |  |  |
| 55                   | 75  | 3155          | 1PQ0 311-8YB80           | 484,090                  |  |  |
| 75                   | 100 | 315M          | 1PQ0 314-8YB80           | 597,360                  |  |  |
| 90                   | 120 | 315L          | 1PQ0 318-8YB80           | 665,360                  |  |  |
| 110                  | 150 | 315L          | 1PQ0 319-8YB80           | 698,120                  |  |  |
| 132                  | 180 | 355L          | 1PQ0 356-8YB80           | 859,340                  |  |  |
| 160                  | 215 | 355L          | 1PQ0 357-8YB80           | 948,530                  |  |  |
| 200                  | 270 | 355L          | 1PQ0 358-8YB80           | 991,690                  |  |  |
|                      |     |               |                          |                          |  |  |

# Temperature rise limited to 75K & @ Temp. rise limited to 95K.

The MRP is inclusive of the blower and inverter grade insulation scheme.

Insulated bearings are mandatory for 1PQ0 motors in frames 280 and above when operated in constant torque modes below 5Hz of frequency. Please refer to extras for Accessories & prices of insulated bearings. The insulated bearings are NOT included in these Prices.

690V Y Design available against requirement.Pls. Contact your nearest Sales Office







Superbreed. Degree of Prot. IP55, Ins Class 'F'. Ambient 45°C 415V  $\pm$ 10%, 50Hz  $\pm$  5%, combined  $\pm$ 10%. Prices for IMB3 (foot mounted) versions.

| 2 Pele 2    | 000         |               |                          |                                       |     | 4. Dala 4F | 00 rev/min |               |                          |                                       |
|-------------|-------------|---------------|--------------------------|---------------------------------------|-----|------------|------------|---------------|--------------------------|---------------------------------------|
|             | 000 rev/min | F             | T                        | 11-3-1400                             |     |            |            | F             | T                        | H-it MDD                              |
| kW          | utput<br>HP | Frame<br>size | Type reference<br>(MLFB) | Unit MRP<br>for standard<br>Motor Rs. |     | kW         | tput<br>HP | Frame<br>size | Type reference<br>(MLFB) | Unit MRP<br>for standard<br>Motor Rs. |
| 240V∆/4     | 15VY 50Hz   |               |                          |                                       |     | 240VA / 41 | 5VY 50Hz   |               |                          |                                       |
|             |             |               |                          |                                       |     | 0.12       | 0.16       | 63            | 1LA0 060-4YA80           | 6,250                                 |
| 0.18        | 0.25        | 63            | 1LA0 060-2YA80           | 5,960                                 |     | 0.18       | 0.25       | 63            | 1 LA0 063-4YA80          | 6,590                                 |
| 0.25        | 0.35        | 63            | 1LA0 063-2YA80           | 6,130                                 |     | 0.25       | 0.35       | 71            | 1LA0 070-4YA80           | 6,700                                 |
| 0.37        | 0.5         | 71            | 1LA0 070-2YA80           | 6,500                                 |     | 0.37       | 0.5        | .71           | 1LA0 073-4YA80           | 6,950                                 |
| 0.55        | 0.75        | 71            | 1LA0 073-2YA80           | 7,210                                 |     | 0.55       | 0.75       | 80            | 1LA0 080-4YA80           | 7,690                                 |
| 0.75        | 1           | 80            | 1LA0 080-2YA80           | 7,460                                 |     | 0.75       | 1          | 80            | 1LA0 083-4YA80           | 7,770                                 |
| 1.1         | 1.5         | 80            | 1LA0 083-2YA80           | 8,150                                 |     | 1.1        | 1.5        | 905           | 1LA0 090-4YA80           | 8,530                                 |
| 1.5         | 2           | 905           | 1LA0 090-2YA80           | 9,040                                 | D   | 1.5        | 2          | 90L           | 1LA0 096-4YA80           | 9,280                                 |
| 2.2         | 3           | 90L           | 1LA0 096-2YA80           | 11,580                                | . 1 |            |            |               |                          |                                       |
| 415V∆ 50    | )Hz         |               |                          | X                                     |     | 415V∆ 50H  | Z          |               |                          |                                       |
|             |             |               |                          |                                       | ٦   | 2.2        | 3          | 100L          | 1LA0 106-4YA80           | 12,280                                |
| 3.7         | 5           | 100L          | 1LA0 107-2YA80           | 14,260                                | . ` | 3          | 4          | 100L          | 1LA0 107-4YA80           | 12,530                                |
| 5.5         | 7.5         | 112M          | 1LA0 114-2YA80           | 21,880                                | Þ   | 3.7        | 5          | 112M          | 1LA0 113-4YA80           | 15,800                                |
| 7.5         | 10          | 1325          | 1LA0 131-2YA80           | 24,170                                |     | 5.5        | 7.5        | 1325          | 1LA0 130-4YA80           | 21,690                                |
| 9.3         | 12.5        | 132M          | 1LA0 133-2YA80           | 39,410                                |     | 7.5        | 10         | 13.2M         | 1LA0 133-4YA80           | 25,300                                |
| 11          | 15          | 160M          | 1LA0 163 2YC80           | 42,210                                |     | 11         | 15         | 160M          | 1LA0 163-4YA80           | 40,190                                |
| 15          | 20          | 160M          | 1LA0 164-2YC80           | 49,450                                |     | 15         | 20         | 160L          | 1LA0 166-4YA80           | 50,040                                |
| 18.5        | 25          | 160L          | 1LA0 166-2YC80           | 67, <b>1</b> 10                       |     | 18.5       | 25         | 180M          | 1LA0 183-4YA80           | 70,760                                |
| 22          | 30          | 180M          | 1LAO 183 2YA80           | 74,990                                |     | 22         | 30         | 180L          | 1LA0 186-4YA80           | 75,380                                |
| 30          | 40          | 200L          | 1LA0 206-2YB80           | 106,360                               |     | 30         | 40         | 200L          | 1LA0 207-4YA80           | 101,860                               |
| 37          | 50          | 200L          | 1LAQ 207-2YB80           | 135,970                               |     | 37         | 50         | 2255          | 1LA0 220-4YA80           | 130,590                               |
| 45          | 60          | 225M          | 1LA0 223-2YB80           | 174,270                               |     | 45         | 60         | 225M          | 1LA0 223-4YA80           | 158,460                               |
| 55          | 75          | 250M          | 1LA0 253-2YB80           | 236,170                               |     | 55         | 75         | 250M          | 1LA0 253-4YA80           | 220,450                               |
| 75          | 100         | 2805          | 1LA0 280-2YC80           | 308,300                               |     | 75         | 100        | 2805          | 1LA0 280-4YA80           | 282,140                               |
| 90          | 120         | 280M          | 1LA0 283-2YC80           | 357,190                               |     | 90         | 120        | 280M          | 1LA0 283-4YA80           | 327,390                               |
| <b>1</b> 10 | 150         | 315S          | 1LA0 310-2YC80           | 470,330                               |     | 110        | 150        | 315S          | 1LA0 310-4YA80           | 412,350                               |
| 132         | 180         | 315M          | 1LA0 313-2YC80           | 578,500                               |     | 132        | 180        | 315M          | 1LA0 313-4YA80           | 483,630                               |
| 160         | 215         | 315L          | 1LA0 316-2YC80           | 633,470                               |     | 160        | 215        | 315L          | 1LA0 316-4YA80           | 540,710                               |
| 200         | 270         | 315L          | 1LA0 317-2YC80           | 739,890                               |     | 200        | 270        | 315L          | 1LA0 317-4YA80           | 691,440                               |
| 250         | 335         | 355L          | 1LA0 356-2YC80           | 820,100                               |     | 250        | 335        | 355L          | 1LA0 356-4YB80           | 739,660                               |
| 315         | 425         | 355L          | 1LA0 357-2YC80           | 904,840                               |     | 315        | 425        | 355L          | 1LA0 357-4YB80           | 870,600                               |

For 63 - 132 frames - Last digit of order code to change based on construction type

| Construction | IMB3 | IMB5/V1 | IMB14 | IMV1 with Canopy | IMB35 | IMB34 |
|--------------|------|---------|-------|------------------|-------|-------|
| Last digit   | 0    | 1       | 2     | 4                | 6     | 7     |

Important Note: Please contact nearest sales office for availability of the product







Superbreed. Degree of Prot. IP55, Ins Class 'F'. Ambient 45°C 415V  $\pm$ 10%, 50Hz  $\pm$  5%, combined  $\pm$ 10%. Prices for IMB3 (foot mounted) versions.

| 6 - Pole 100 | 00 roudmin |       |                |                           |
|--------------|------------|-------|----------------|---------------------------|
|              | tput       | Frame | Type reference | Unit MRP                  |
| kW           | HP         | size  | (MLFB)         | for standard<br>Motor Rs. |
| 240V∆ / 41   | 5VY 50Hz   |       |                |                           |
| 0.18         | 0.25       | 71    | 1LA0 070-6YA80 | 6,960                     |
| 0.25         | 0.35       | 71    | 1LA0 073-6YA80 | 7,220                     |
| 0.37         | 0.5        | 80    | 1LA0 080-6YA80 | 8,220                     |
| 0.55         | 0.75       | 80    | 1LA0 083-6YA80 | 8,470                     |
| 0.75         | 1          | 90S   | 1LA0 090-6YA80 | 9,050                     |
| 1.1          | 1.5        | 90L   | 1LA0 096-6YA80 | 9,990                     |
| 1.5          | 2          | 100L  | 1LA0 106-6YA80 | 13,310                    |
| 415V∆ 50H    | z          |       |                |                           |
| 2.2          | 3          | 112M  | 1LA0 113-6YA80 | 15,930                    |
| 3.7          | 5          | 132S  | 1LA0 131-6YA80 | 23,320                    |
| 5.5          | 7.5        | 132M  | 1LA0 134-6YA80 | 25,890                    |
| 7.5          | 10         | 160M  | 1LA0 163-6YB80 | 41,470                    |
| 11           | 15         | 160L  | 1LA0 166-6YB80 | 51,550                    |
| 15           | 20         | 180L  | 1LA0 186-6YA80 | 74,040                    |
| 18.5         | 25         | 200L  | 1LA0 206-6YA80 | 96,540                    |
| 22           | 30         | 200L  | 1LA0 207-6YA80 | 104,800                   |
| 30           | 40         | 225M  | 1LA0 223-6YA80 | 163,230                   |
| 37           | 50         | 250M  | 1LA0 253-6YA80 | 221,190                   |
| 45           | 60         | 2805  | 1LA0 280 6YA80 | 283,430                   |
| 55           | 75         | 280M  | 1LA0 283-6YA80 | 320,210                   |
| 75           | 100        | 3155  | 1LA0 310-6YA80 | 394,120                   |
| 90           | 120        | 315M  | 1LA0 313-6YA80 | 496,250                   |
| 110          | 150        | 315L  | 1LA0 316-6YA80 | 553,090                   |
| 132          | 180        | 315L  | 1LA0 317-6YA80 | 643,720                   |
| 160          | 215        | 355L  | 1LA0 356-6YB80 | 700,950                   |
| 200          | 270        | 355L  | 1LA0 357-6YB80 | 769,690                   |
| 250          | 335        | 355L  | 1LA0 358-6YB80 | 829,540                   |

|   | 8 - Pole 750 |                | Frame |                          |                          |
|---|--------------|----------------|-------|--------------------------|--------------------------|
|   | Out<br>kW    | Output<br>W HP |       | Type reference<br>(MLFB) | Unit MRP<br>for standard |
|   | K. 1 1       | - "            |       |                          | Motor Rs.                |
| ı |              |                |       |                          |                          |
|   |              |                |       |                          |                          |
|   |              |                |       |                          |                          |
|   |              |                | /.    |                          |                          |
|   |              |                |       |                          |                          |
|   |              | . \            |       |                          |                          |
|   |              |                | •     |                          |                          |
|   |              |                |       |                          |                          |
| 9 | 415VA 50H    | z              |       |                          |                          |
|   | 1 1          |                |       |                          |                          |
| К |              | Y              |       |                          |                          |
|   | 5.5          | 7.5            | 160M  | 1LA0 164-8YB80           | 41,330                   |
| J | 7.5          | 10             | 160L  | 1LA0 166-8YB80           | 52,610                   |
| 7 | 11           | 15             | 180L  | 1LA0 186-8YB80           | 75,520                   |
|   | 15           | 20             | 200L  | 1LA0 207-8YB80           | 106,880                  |
|   | 18.5         | 25             | 225S  | 1LA0 220-8YB80           | 137,480                  |
|   | 22           | 30             | 225M  | 1LA0 223-8YB80           | 166,530                  |
|   | 30           | 40             | 250M  | 1LA0 253-8YB80           | 225,640                  |
|   | 37           | 50             | 280S  | 1LA0 280-8YB80           | 288,550                  |
|   | 45           | 60             | 280M  | 1LA0 283-8YB80           | 334,650                  |
|   | 55           | 75             | 315S  | 1LA0 310-8YB80           | 402,070                  |
|   | 75           | 100            | 315M  | 1LA0 313-8YB80           | 506,010                  |
|   | 90           | 120            | 315L  | 1LA0 316-8YB80           | 568,440                  |
|   | 110          | 150            | 315L  | 1LA0 317-8YB80           | 598,490                  |
|   | 132          | 180            | 355L  | 1LA0 356-8YB80           | 738,690                  |
|   | 160          | 215            | 355L  | 1LA0 357-8YB80           | 815,360                  |
|   | 200          | 270            | 355L  | 1LA0 358-8YB80           | 852,460                  |
|   |              |                |       |                          |                          |

For 63 - 132 frames - Last digit of order code to change based on construction type

| Construction | IMB3 | IMB5/V1 | IMB14 | IMV1 with Canopy | IMB35 | IMB34 |
|--------------|------|---------|-------|------------------|-------|-------|
| Last digit   | 0    | 1       | 2     | 4                | 6     | 7     |

Important Note: Please contact nearest sales office for availability of the product



#### For Project 3: Use of ON – OFF Controller system



#### SHIWKON DIGITEK PVT.LTD.

Instrumentation & Controls

www.shlwkon.com

#### **QUOTATION**

| To,<br>SEE – Tech Solutions Pvt. Ltd.<br>Nagpur |                    |            |        |            | Quat. No.:SDPL/Q/09-10/1051 |
|-------------------------------------------------|--------------------|------------|--------|------------|-----------------------------|
|                                                 |                    |            |        |            | Date::29-March-2010         |
| Ph. 09960344745                                 |                    |            |        |            | Your Ref. No. e-mail        |
| Kind<br>Manage                                  | Attn:<br>er Projec | Ms.<br>cts | Monika | Chaudhari- | <b>Date</b> 29-March-2010   |

Dear Mam,

We thankfully acknowledge the receipt of your above-mentioned enquiry regarding your requirements.

We are pleased to submit our best offer as under.

\_\_\_\_\_

========

Sr.No. Description Price

(1) Digital Microcontroller based Cyclic Timer having following facilities:

On-time settable: 0-99 min

Off-time settable: 0-99 min

Power supply: 230V

Output: Relay contact- NO, NC

Size: 96 x 96mm

(2) <u>Clamp on Power Meter:</u> Rs.

10,500/-

Make: Kusum-Meco

Model: 2709 Capacity: 1000 A

Other details as per Attached Catalogue

\_\_\_\_\_\_

=====



#### **Commercial Terms & Conditions:**

Prices : Ex-works Ahmedabad

Packing & Forwarding : @ 2 %

Taxes : CST 2% extra as applicable

Delivery Period : Within 3 to 4 weeks
Mode of Dispatch : Through Courier
Freight/ Courier Charges : Extra as Applicable

Payment Terms : 20 % Advance & Balance at the time of Delivery

Thanking you,

#### For, SHIWKON DIGITEK PVT LTD.

Hardik Patel Director 98250 50706

Corporate Office: 309, Pushpam, Opp. Seema Hall, 100 Ft. Shyamal-anand Nagar Road, Satellite, Ahmedabad – 380 015. INDIA.





# **Bureau of Energy Efficiency (BEE)**

(Ministry of Power, Government of India) 4th Floor, Sewa Bhawan, R. K. Puram, New Delhi – 110066 Ph.: +91 - 11 - 26179699 (5 Lines), Fax: +91 - 11 - 26178352 Websites: www.bee-india.nic.in, www.energymanagertraining.com



#### **SEE-Tech Solutions Pvt. Ltd**

11/5, MIDC, Infotech Park, Near VRCE Telephone Exchange, South Ambazari Road, Nagpur – 440022 Website: www.letsconserve.org



#### **India SME Technology Services Ltd**

DFC Building, Plot No.37-38, D-Block, Pankha Road, Institutional Area, Janakpuri, New Delhi-110058 Tel: +91-11-28525534, Fax: +91-11-28525535 Website: www.techsmall.com